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Abstract

Updating Rainfall Intensity-Duration-Frequency Curves in Sweden Accounting for
the Observed Increase in Rainfall Extremes

Increased extreme precipitation has been documented in many regions around the world, in-
cluding central and northern Europe. Global warming increases average temperature, which in
turn enhances atmospheric water holding capacity. These changes are believed to increase the
frequency and/or intensity of extreme precipitation events. In determining the design storm, or
a worst probable storm, for infrastructure design and failure risk assessment, experts commonly
assume that statistics of extreme precipitation do not change significantly over time. This so-
called notion of stationarity assumes that the statistics of future extreme precipitation events
will be similar to those of historical observations. This study investigates the consequences of
using a stationary assumption as well as the alternative: a non-stationary framework that con-
siders temporal changes in statistics of extremes. Here we evaluate stationary and non-stationary
return levels for 10-year to 50-year extreme precipitation events for different durations (1-day,
2-day, ..., 7-day precipitation events), based on the observed daily precipitation from Sweden.
Non-stationary frequency analysis is only considered for stations with statistically significant
trends over the past 50 years at 95% confidence (i.e., 15 to 39 % out of 139 stations, depend-
ing on duration, 1-day, 2-day, ..., 7-day). We estimate non-stationary return levels using the
General Extreme Value distribution with time-dependent parameters, inferred using a Bayesian
approach. The estimated return levels are then compared in terms of duration, recurrence in-
terval and location. The results indicate that a stationary assumption might, when a significant
trend exists, underestimate extreme precipitation return levels by up to 40 % in Sweden. This
report highlights the importance of considering better methods for estimating the recurrence in-
terval of extreme events in a changing climate. This is particularly important for infrastructure
design and risk reduction.

Keywords: IDF curves, climate change, non-stationarity, stationary, Sweden, return level, re-
turn period, NEVA, GEV, extreme value analysis
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Referat

Uppdatering av Intensitets-Varaktighetskurvor i Sverige med hänsyn till observera-
de ökande trender av extrem nederbörd

Ökad extrem nederbörd har dokumenterats globalt, däribland centrala och norra Europa. Den
globala uppvärmningen medför en förhöjd medeltemperatur vilket i sin tur ökar avdunstning
av vatten fr̊an ytor samt atmosfärens förm̊aga att h̊alla vatten. Dessa förändringar tros kunna
öka och intensifiera nederbörd. Vid bestämning av dimensionerande nederbördsintensiteter för
byggnationsprojekt antas idag att frekvensen och storleken av extrem nederbörd inte kommer att
förändras i framtiden (stationäritet), vilket i praktiken innebär ingen förändring i klimatet. Den
här studien syftar till att undersöka effekten av en icke-stationärt antagande vid skattning av
dimensionerande nederbördsintensitet. Icke-stationära och stationära nerderbördsintensiteter för
återkomsttider mellan 10 och 100 år bestämdes utifr̊an daglig och flerdaglig svensk nederbörds-
data. Nederbördintensiteterna bestämdes med extremvärdesanalys i mjukvaran NEVA, där den
generella extremvärdesfördelningen anpassades till årlig maximum nederbörd p̊a platser i Sverige
som p̊avisade en ökande trend under de senaste 50 åren (15% till 39 % utav 139 stationer, beroen-
de p̊a varaktighet). De dimensionerande nederbördsintensiteterna jämfördes sedan med avseende
p̊a varaktighet, återkomsttid och plats. Resultaten indikerade p̊a att ett stationärt antagande
riskerar att underskatta dimensionerande nederbördsintensiteter för en viss återkomsttid med
upp till 40 %. Detta indikerar att antagandet om icke-stationäritet har större betydelse för olika
platser i Sverige, vilket skulle kunna ge viktig information vid bestämning av dimensionerande
regnintensiteter.

Nyckelord: Intenstitets-varaktighetskurvor, Klimatförändring, Icke-stationäritet, stationäritet,
Sverige, flerdaglig nederbörd, dimensionerande nederbördsintensitet, återkomsttid, NEVA,
GEV, extremvärdesanalys
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Populärvetenskaplig
sammanfattning

Uppdatering av Intensitets-Varaktighetskurvor i Sverige med hänsyn till observera-
de ökande trender av extrem nederbörd

Sofia Eckersten

Jordens medeltemperatur har ökat under det senaste århundradet till följd av klimatföränd-
ringar. Den ökande medeltemperaturen har inneburit att mängden vatten som avdunstar fr̊an
ytor samt atmosfärens förm̊aga att h̊alla vatten har förändrats. Följaktligen har mängden vat-
ten och vatten̊anga i atmosfären som finns tillgängligt för nederbörd tilltagit och därmed har
ocks̊a risken för intensivare regn ökat. P̊a en global skala har en tilltagande trend i extrem ne-
derbörd observerats och samma sak verkar gälla i centrala och norra Europa inklusive Sverige.
Stora regnmängder under en kort tidsperiod, s̊a väl som m̊attliga regnmängder under en längre
tidsperiod, förhöjer risken för höga flöden och översvämningar i naturliga och urbana miljöer.
Byggnadsverk dimensioneras ofta efter den maximala nederbörd som sannolikt kommer att falla
under en viss tidsperiod över omr̊adet där det ska byggas, kallad dimensionerande nederbördsin-
tensitet. Exempelvis, en byggnad som förväntas st̊a i minst 50 år dimensioneras för att kunna
motst̊a den högsta sannolika nederbördshändelsen inom en 50-̊ars period (50-̊ars regn). P̊a s̊a vis
kan skador p̊a infrastruktur till följd av stor och intensiv nederbörd förebyggas. Uppskattningen
av dimensionerande nederbördsintensiteter med de metoder som används idag, antar att klimatet
kommer att förbli detsamma i framtiden som det har varit under de senaste decenierna. Detta
antagande strider mot den allmänna uppfattningen att nederbörden tilltar i vissa omr̊aden, dvs
att klimatet anses icke-stationärt. Hur stor betydelse har antagandet om stationärtitet alter-
nativt icke-stationäritet för skattningen av den “dimensionerande nederbördsintensiteten”; hur
mycket underskattas den?

Sverige karaktäriseras av ett milt klimat i jämförelse med andra omr̊aden som ligger p̊a samma
breddgrad. Detta beror p̊a närheten till Atlanten och de dominerande vindriktningarna. Västliga
vindar tar med sig varm och fuktig luft utifr̊an havet vilket ger nederbörd över Sverige året runt.
Under de senaste årtiondena har b̊ade intensivare nederörd samt att nederbördshändelserna p̊ag̊ar
under en längre tid noterats. Dessa händelser har dessutom associerats med översvämningar,
bland annat i mellersta Sverige. Fr̊agan som har ställts i den här studien är därför ifall den
årliga maximala nederbörden för perioder fr̊an en dag till en vecka har ökat över tid. Har antalet
stora nederbördshändelser ökat? Hur beror den “dimensionerande nederbördsintensitetenp̊a ifall
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icke-stationäritet antas eller inte?

För att undersöka ifall den årliga maximala dygnsnederbörden för olika varaktigheter hade ökat
för en specifik plats under de senaste 50 åren gjordes ett trend test, det s̊akallade Mann-Kendall
(MK) trend test, p̊a den högst uppmätta dygnsnederbörden för varje p̊aföljande hydrologiskt år
(1 oktober - 31 september). Fr̊an dataserier med dagliga nederbördsdata uppmätt vid 139 oli-
ka väderstationer runt om i Sverige identifierades omr̊aden med positiva trender (20 omr̊aden).
P̊a motsvarande sätt identifierades stationer med positiva trender för längre varaktighet (2 dagar,
3 dagar...7 dagar). Totalt 12 stationer identifierades med positiva trender för alla varaktigheter
upp till en vecka. Det undersöktes ocks ifall det fanns en förändring i fördelningen av den årliga
maximala nederbörden mellan den första och andra halvan av 50-̊ars perioden. Detta gjordes med
Kolmogorov-Smirnov test som antydde att årliga maximala nederbörden har ökat under de se-
naste 25 åren. För de 20 stationer som visade p̊a en ökande trend i dygnsnederbörd samt för de 12
stationer med en trend för varaktigheter upp till en vecka, bestämdes sedan de dimensionerande
nederbördsintensiteterna (för olika varaktigheter). Detta gjordes genom att analysera sannolik-
heten att extrema värden p̊a nederbörden uppkommer vid varje station, s.k. extremvärdesanalys,
med hjälp av mjukvarupaketet NEVA. Tv̊a olika tillvägag̊angssätt användes; ett med antagandet
om stationäritet och ett med antagandet om icke-stationäritet. Antagandet om icke-stationäritet
antar att nederbörden förväntas öka linjärt med tiden. De dimensionerande nederbördsintensite-
terna för de olika stationerna jämfördes sedan med avseende p̊a plats, varaktighet och återkomst-
tid. Slutligen utvecklades ocks̊a intesitets-varaktighetskurvor för antagandet om icke-stationära
respektive stationära förh̊allanden.

Trend analysen resulterade i att vid ungefär 15 % (20 stycken) av de undersökta stationerna
hade den dagliga årliga maximala nederbörden ökat. Fler stationer visade p̊a en ökande trend
för längre varaktighet, maximalt 28 % (39 stycken) för 3 dagars nederbörd. Endast 12 stationer
vidhöll ökande nederbördstrender för samtliga varaktigheter. Resultaten fr̊an extremvärdesana-
lysen indikerade att antagandet om stationäritet skattar lägre värden p̊a de dimensionerande
nederbördsintensiteterna för en viss återkomsttid än vad antagandet om icke-stationäritet gör.
Skillnaden mellan de dimensionerande regnintensiteterna varierade mellan olika platser, och var
som störst i Rossared, Sm̊aland, där det skilde ungefär 25 mm/dag vilket motsvarade en rela-
tiv skillnad p̊a 50 %. Den absoluta skillnaden minskade generellt med ökande varaktighet, vil-
ket antydde att antagandet om icke-stationäritet har större betydelse för kortare varagtigheter
(dygnsvärden).

Antagandet om icke-statinäritet vid bestämningen av intesitets-varaktighetskurvor är ett steg
mot att klimatanpassa ett relativt enkelt dimesioneringsverktyg vid byggnationer. Ifall infor-
mation om hur nederbörd p̊averkas av andra klimatvariabler n nederbrden sjlvt ocks̊a beaktas,
s̊a skulle det kunna innebära mer tillförlitlig information om framtida extrem nederbörd.
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Glossary

Precipitation: Condensed atmospheric water vapour falling down on earth, including snow,
rain, hail etc.

Climate Change: Changes in the statistical distribution of weather patterns caused by biotic
processes, variations in solar radiation, volcanic eruption, certain human activities etc.

Exceedance probability: The probability that precipitation exceeds a certain threshold

Return level: The highest expected precipitation intensity for a particular recurrence interval

Return period: The recurrence interval associated with a particular precipitation event (return
level)

Design Storm: Virtual storm providing information about the expected rain intensity for a
given duration and probability of occurrence

Probable maximum precipitation (PMP): The greatest accumulation of precipitation for
a given duration meteorologically possible for an area

Column Water Vapour: The depth of water in a column in the atmosphere

Water year: 12 month period beginning 1 October and continuing through September 30

Null hypothesis: Refers to a general statement or default position that there is no relationship
between two variables

NEVA: Non-stationary extreme value analysis software package

Prior probability distribution: Probability distribution that express beliefs about a quantity
before evidence is taken into account

Posterior probability distribution: The probability distribution of an outcome given an-
other outcome
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Chapter 1

Introduction

Human activity changes the atmosphere’s composition by increasing greenhouse gases (GHG)[45,
61]. These changes have subsequently increased global temperatures, surface evaporation and
atmospheric water holding capacity [64, 65]. As a result, climate change may increase the amount
of water available for precipitation in the atmosphere as well as increase the probable maximum
precipitation (PMP) or expected extreme precipitation [4, 33]. Those changes in turn would
affect society by increasing the risk of climatic extremes [13, 25] that can cause floods and
damage to infrastructure. On a global basis, trends of increasing precipitation extremes have
been observed [12, 45, 67]. In northern and central Europe several studies also indicate increasing
trends in extreme events, e.g. in Sweden, Denmark, Czech Republic, Germany and Poland,
Belgium as well as UK [3, 19, 35, 38, 48, 52]. Locations that are seeing an increase in total
annual precipitation also tend to see increasing extreme events [39, 60, 57]. However, Europe’s
total annual precipitation also has negative trends, indicating that extreme precipitation is both
intensified and de-intensified [3, 11, 16, 34, 42, 46, 49, 50, 66]. Trends are highly dependent on
location, season and duration analyzed, which studies also note. Research on precipitation in
southern Sweden shows that total annual precipitation has increased at some locations and that
more extreme precipitation events are lasting for multiple days. These prolonged events have
been mentioned in the context of flooding in southern Sweden (descriptions of flooding events
are given at SMHI.se/kunskapsbanken) [3].

Hydraulic and hydrological engineers use intensity duration frequency(IDF) curves to design
infrastructure that can deal with extreme precipitation and flooding [14, 15, 41, 40, 59, 63, 68].
IDF-curves can be developed with frequency analysis at sites where historical precipitation data
is available. They are designed to capture the intensity and frequency of precipitation, i.e. the
expected rain intensity (return level, qp) for a given duration and the probability of occurrence
(return period, T). The design storm incorporates rain intensity estimated from IDF-curves,
obtained by fitting a suitable theoretical probability distribution function to the observed data [6].
The IDF-curves applied today are derived assuming that extreme events’ occurrence probability
does not change significantly over time [14, 29]. However, studies show that extreme events have
changed over time, an observation referred to as non-stationary conditions [1, 19, 29].
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Box 1: What about precipitation?

The global water cycle encompasses the balance of water on, above and below the surface
of the Earth. As the mass of water remains constant, the partitioning between the major
reservoirs of ice, fresh water, saline water and atmospheric water varies depending on climatic
variables. The sun’s radiation heats the ocean and land surfaces, thereby evaporating water
into the atmosphere. Upward air movement comes from rising air over mountains, warm and
cold fronts, and convection created by local heating of the surface and surrounding weather
systems. The air moves around in the atmosphere, condenses to form clouds and falls back
onto the surface as precipitation. The water infiltrates or runs off the landscape and ends
up in the ocean, thereby completing the water cycle.[64]

Precipitation varies with time and changes in amount, intensity, frequency and type. Snow
forms below freezing point, but also has variability: At low temperatures such as −10◦C it is
dry and light whereas closer to 0◦C, larger snowflakes can form, resulting in heavier snowfalls.
Snow remains on the ground during low temperatures before it runs off. At temperatures
above freezing point, light precipitation can form from condensed total column water vapor
(TCWV) or evaporation in the precipitation area. Moderate and heavy precipitation forms
from moisture convergence over regions that are 10 to 25 times larger than those needed for
light precipitation. Light to moderate precipitation soaks into the soil, providing water to
plants when it falls as rain, whereas heavy rain and rapid snowmelt may cause local flooding.
[64]

A strong relationship between total column water vapor and sea surface temperatures (SST)
has been observed and can be described by the Clausius Clapeyron (C-C) relationship. This
relationship expresses the water-holding capacity of the atmosphere as a function of temper-
ature, typically 7% per 1◦C. The highest TCWV is found over the tropical Pacific Warm
Pool and occuspies the highest large-scale values of SST. High TCWV is also observed in
the Northern Hemisphere during the summers, as a consequence of higher surface tempera-
tures. The effect of SST on TCWV is generally more substantial over seas, mainly because
of unlimited supply of water. Precipitation is strongly correlated with TCWV, especially in
the tropics and subtropics, indicating that precipitation also can be related to SST values.
Changes in SST are also associated with SST gradients and subsequently, precipitation. Sur-
face pressure gradients and winds also have a strong influence on precipitation. Therefore,
large amounts of precipitation can be observed along the mid-latitude storm tracks, although
TCWV reduces with higher latitudes (decrease in SST), [64, 65]

Atmospheric circulation patterns affect precipitation regionally and locally. In the Northern
Hemisphere, fluctuations in atmospheric pressure differences at sea level between the Ice-
landic low and the Azores high controls the strength and direction of westerly winds as well
as storm tracks across the north Atlantic. The westerly winds bring moist air into Europe
affecting the climate there. Weak westerlies, i.e. those with small pressure differentials,
result in warm summers and cold winters in Sweden. Strong westerlies produce cold sum-
mers, mild winters and more frequent precipitation. This phenomena is called the North
Atlantic Oscillation (NAO) and has been observed to intensify the precipitation in Europe
periodically. [5, 20, 55]
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A simple approach to address climate-change-related alteration in extreme precipitation when de-
veloping IDF-curves is to multiply the estimated design storm with a climate factor derived from
future climate scenarios. In Sweden, a climate factor of 1.2 is commonly advised for hourly precip-
itation with a 100-year recurrence interval (for more information; svensktvatten.se/Vattentjanster
and klimatanpassning.se). Another approach is to incorporate assessed non-stationarity into the
IDF-concept. Cheng and AghaKouchak (2014) propose a method addressing changes in precip-
itation intensity, duration and frequency analysis [2, 8, 9, 18, 21, 27, 36, 53, 54] and provide an
approach that customizes the adjustment of design storms to local climate change. Their method,
Non-stationary Extreme Value Analysis (NEVA), accounts for non-stationarity in climate time
series, e.g. for precipitation [70], and includes methods for addressing temporal changes in ex-
tremes [10, 24, 23, 32, 56, 62, 69, 72]. For IDF-curves, the method uses a General Extreme Value
(GEV) distribution fitted to historical annual maximum precipitation and infers the distribution
parameters using a Bayesian-based Markov Chain Monte Carlo (MC-MC) approach [8]. The
estimated intensities (return levels) for particular recurrence intervals (return periods) are de-
termined along with uncertainty bounds, assuming that climate change cause the distribution
characteristics for climatic extremes to change linearly with time. A case study on ground-based
precipitation data in the U.S. where extreme precipitation increases over time, shows that sta-
tionary IDF-curves can underestimate extreme precipitation events by as much as 60 % on an
hourly scale. Consequently, structures designed to withstand extreme events estimated assum-
ing stationarity may not resist extreme events under climate change [7]. NEVA provides an
approach to estimate design storms assuming non-stationary conditions based on local historical
information about extreme precipitation patterns.

The main goal of this study was to determine if the influence of climate on extreme precipitation
in Sweden should be considered when deriving design storms, by means of representing the
climate change with the concept of non-stationarity. Non-stationarity is here assumed to be a
linear increase in extreme precipitation over time. We also investigate the effect of assuming
non-stationary conditions i eestimating design storms for locations where extreme precipitation
events are influenced by climate change.
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Chapter 2

Method

Records of ground based data from 139 Swedish automatic weather stations over approximately
50 years provided the historical information about precipitation patterns. The time series were
collected from the Swedish Hydrological and Meteorological Institute’s (SMHI) open database
and no corrections were made for potential biases from the measuring instrument. The highest
observed precipitation events within every water year (October 1 to September 30) for different
durations (1-day, 2-day, 3-day...7-day) were extracted from the data records. Those locations
exhibiting a trend over time, detected with the Mann-Kendall trend test, were used to develop
IDF-curves assuming non-stationary and stationary conditions. It was assumed that extreme
precipitation events increase linearly with time due to climate change and also that historic hy-
drometeorological conditions can be used to characterize the future. Return levels corresponding
to the return periods of 10, 25 and 50 years were derived with NEVA software package [8]. No
corrections were made for potential cyclical patterns caused by the North Atlantic Oscillations
(NAO). This chapter summarizes the data collection, quality control and analysis of trends and
change in distribution of the data records. A detailed description of the return level derivation,
the parameter estimation with NEVA and the simulation strategy follow. Finally, the develop-
ment of the IDF-curves is disclosed. All analyses and simulations were performed in Matlab.
The maps were produced by means of Lantmateriets open database for Swedish mapping and
QGIS.

2.1 Study Site

Sweden, located in northern Europe, has a mild climate relative to its high latitude because of
its proximity to the Atlantic Ocean and the dominating wind directions. Low pressure systems
supply the region with precipitation all year round. However, long periods dominated by dry
climate may occur when high pressure systems block the low pressure systems north and south
of Sweden. The south Sweden coast is warm temperate whereas most of the land mass is
considered cold temperate. The temperature varies strongly with seasons. During the winter,
wind, wind speed and cloud cover highly impacts temperatures. The valleys experience the
lowest temperatures. Conversely, in summer the lowest temperatures are measured at mountain
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peaks. The total annual precipitation ranges between 1000 and 2000 mm. Several factors affect
precipitation patterns: e.g. topography and atmospheric circulation patterns. As wind blows in
over the high mountains in the northwest, air is forced upwards and cools, causing the largest
precipitation in the country (2000 mm per year). In the same regions, there are locations with
little precipitation, areas of so-called rain shadow (300 mm per year). In southern Sweden, the
highland in the southwest receives the most precipitation. Large amounts of precipitation also
hit the northeast coast. The archipelago experiences less precipitation compared to inland areas.
(Kunskapsbanken at SMHI.se).

2.2 Data collection and Processing

Daily precipitation data were collected from the SMHI’s database for 139 weather stations in
Sweden. The record length varied among the stations but all cases covered at least 50 years,
missing years excluded. Only records with at least 350 days per year and less than 5 missing
years in total were included in the study. No data were removed which means that a potential
bias was introduced into the analysis. Time series for durations of 2-7 days were created based on
the daily precipitation data. Daily values for every water year were summarized using a moving
window, i.e. day 1 and 2 as well as day 2 and 3 are summed [3, 16]. The annual maximum
precipitation in each successive water year was also extracted from the time series (figure 2.1)
[7].
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Figure 2.1: The full record of daily precipitation (left) and the daily annual maximum precipitation
(right) for station 3, 14 and 19 table 2.1. The annual maximum 1-day, 2-day, 3-day...7-day precipi-
tation events are used for trend and frequency analysis to develop IDF-curves at locations exhibiting
an increasing trend over time.
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Tabell 2.1: 21 out of 139 stations that held a trend in daily annual maximum precipitation presented
with position (longitude, latitude), total annual precipitation (AS) and annual mean precipitation
(AM).

Number Station Name Longitude Latitude AS (mm) AM (mm/d)
1-day 4-day 7-day

1 Charlottenberg 59.8875 12.3039 770 38.2 15.0 10.7
2 Kasa D 63.3266 19.0532 702 36.8 15.4 11.1
3 Ljungby D 56.8099 13.9694 777 31.3 13.4 9.7
4 Lövberga D 63.9664 15.8533 559 28.7 12.3 8.9
5 Myskel̊asen D 62.3355 12.647 612 32.2 13.3 9.5
6 Nävelsjö 57.4397 14.8863 671 33.6 13.0 9.0
7 Prästkulla 57.7242 14.986 703 34.3 13.5 9.7
8 Rossared D 57.485 12.1997 930 37.4 15.8 11.9
9 Rörvik D 57.2377 14.5751 723 34.8 13.8 9.7
10 Saittarova 67.3345 22.2433 566 30.8 12.3 8.4
11 Skillingaryd 57.4302 14.1004 833 32.5 14.1 10.4
12 Åby 56.9152 14.0141 733 32.3 13.5 9.6
13 Åtorp 59.0966 14.3678 709 33.6 13.9 10.3
14 Ödeshög D 58.2307 14.6624 580 35.6 13.9 9.3
15 Säffle 50.1412 12.9359 742 39.6 16.6 11.7
16 Söraby 57.0345 14.9446 679 33.2 13.4 9.3
17 Svinhult D 57.7471 15.3914 680 37.6 14.6 10.2
18 Tvingelshed 56.3254 15.5793 700 36.2 14.2 10.0
19 Varberg 57.1084 12.2741 765 32.6 13.8 10.0
20 Vänersborg 58.3552 12.3616 7767 33.0 14.4 10.5
21 Mariestad 58.7136 13.823 568 33.8 13.2 9.0

2.3 Trend Analysis and change in distribution

2.3.1 Mann-Kendall trend test

The Mann-Kendall (MK) trend test was used to detect trends in annual maximum precipitation
over time for 1-day, 2-day, 3-day...7-day precipitation events[7]. A trend occurs if the investigated
variable consistently decreases or increases over time. There are various methods to evaluate
trends in data, including parametric and non-parametric. A parametric method requires an
underlying distribution, e.g. the commonly used linear regression assumes data to be normally
distributed. The Mann-Kendall trend test is a non-parametric method, i.e. the analyzed data
do not need an underlying distribution, which makes it useful for extreme value analysis.The
significance level was set to 0.05, a level typically applied within hydrology [28]. This means that
the data are inconsistent with the null hypothesis if the p-value is equal to or below 0.05. The
null hypothesis in the Mann-Kendall trend test is that there is no trend in data. [28, 37].
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The MK-test analyzes the sign of the difference between successive data points. Each observation
is compared with earlier observations, resulting in n(n-1)/2 possible data pairs (n is the total
number of observations). An observation can be declared as equal to, less than or greater than
another observation and is assigned a value of 1, 0 or -1. The test statistics (S) is the sum of the
integers and if large and positive, later observations tend to be larger than earlier observations,
i.e. an upward trend is indicated. If S is large and negative, a decreasing trend is indicated. If
S is small there is no trend. [28]

Only stations show an increasing trend on a daily scale were analyzed in NEVA.

2.3.2 Two-Sample Kolmogorov-Smirnov test

We used the two-sample Kolmogorov-Smirnov test to investigate if there was a change in distri-
bution between the first and second half of the annual maximum precipitation at the different
stations. The test is, like the Mann-Kendall trend test, a non-parametric hypothesis test. It
evaluates the difference between the cumulative distribution functions for the two parts of the
data record. If the null hypothesis is rejected, the two distribution functions of annual maxi-
mum precipitation are considered to come from different distribution functions, indicating that
the precipitation characteristics have changed. In this study, the Matlab-function kstest2.m was
used. [28]

D = maxx

(∣∣F̂1(x)− F̂2(x)
∣∣) (2.1)

2.4 Frequency Analysis with NEVA

The Nonstationary Extreme Value Analysis (NEVA) software package was developed by Linyin
Cheng, Amir AghaKouchak, Eric Gilleland and Richard W Katz in 2014 to facilitate extreme
value analysis under both stationary and non-stationary assumptions. NEVA estimates return
levels, return periods and risks of climatic extremes with Bayesian inference The extreme value
parameters are estimated with a Differential Evolution Markov Chain (DE-MC) approach for
global optimization over the parameter space. NEVA includes posterior probability intervals
(uncertainty bounds) of estimated return levels through Bayesian inference, with its inherent
advantages in uncertainty quantification. The software presents the results of non-stationary
extreme value analysis using the general extreme value distribution fitted to time series of annual
maximum precipitation. Previous studies have used NEVA on temperature and precipitation
data in the United States. [7, 8]

2.4.1 Return period and Return level

In this study, the highest precipitation intensity estimated within a certain time interval and
location was assessed with the return level (qp) and return period (T) concept, a common sta-
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tistical measurement in hydrological risk analysis [?]. The concept can be illustrated by defining
a T-year return level, i.e. a certain precipitation intensity, with the annual maxima exeedance
probability (1 − p, where p is the non-exceedance probability) of 1/T . Hence, a certain event’s
return period is the inverse of the probability that the event will be exceeded in any given year
(equation (2.2)). For example, a 100-year return level has the exceedance probability of 1 %.
In this way, the return level (the quantile) can be related to the return period (the associated
time interval), as in this study with the General Extreme Value (GEV) distribution function, see
equation (2.3). [8, 9]

T =
1

1− p
(2.2)

qp =
((
− 1

lnp

)ξ − 1
)
∗ σ
ξ

+ µ, (ξ 6= 0) (2.3)

θ = (µ, σ, ξ) are the distribution parameters, describing the shape of the GEV distribution
function wherein the return levels and associated return periods are estimated. µ is the location
parameter and specifies the center of the distribution, σ is the scaling parameter and determines
the distribution’s deviation about the location parameter, ξ is the shape parameter governing the
tail behavior, i.e. representing the most extreme precipitation events’ effects on the frequency
distribution of the annual daily maximum precipitation events.

The return level and return period described in equation (2.2) and equation (2.3) assume station-
arity, meaning the return level of a particular return period is the same for all successive years.
This implies that the statistical properties, θ = (µ, σ, ξ), are time-invariant. However, in the
non-stationary case provided by NEVA the distribution parameters are time-variant, meaning
that the properties of the distribution will vary through time [44]. As in previous studies, the
location parameter µ was assumed to be a linear function of time (equation (2.4)) [8, 17, 30, 51].
At some stations, the scale parameter was also set to be time invariant to improve model per-
formance (equation (2.5)). µ1, µ0, σ1 and σ0 are the regression parameters estimated from the
posterior distribution and used to derive µ̃ and σ̃ from the median and 95th percentiles of the
quantiles (Qκ, where κ is the percentile), i.e. µ(t=50) and µ(t=95) since tmax= 100 [8]. The
median is referred to as medium risk because µ̃ are estimated for the climate conditions 50 years
into into the future. The 95th percentile is referred to as the low risk since µ̃ is estimated for the
climate conditions 95 years into the future, and is thus equivalent to a more extreme climate.
This basically means that equation (2.3) can be rewritten into equation (2.6).
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µ̃ = Qκ(µt1 , µt2 , ...), µ(t) = µ1t+ µ0 (2.4)

σ̃ = Qκ(σt1 , σt2 , ...), σ(t) = σ1t+ σ0 (2.5)

qp =
((
− 1

lnp

)ξ − 1
)
∗ σ̃
ξ

+ µ̃, (ξ 6= 0) (2.6)

Extreme Value Theory

Extreme Value Theory (EVT) provides methods for analyzing climatic extremes and their return
levels. One approach within EVT is to derive block maxima series and fit a continuous proba-
bility distribution to them, e.g. the General Extreme Value (GEV) distribution is fitted to the
annual maximum precipitation for different durations. A probability distribution describes the
probability of an outcome within a sample space, e.g. the probability of climatic extremes within
a 50-year return period. The GEV distribution comprises three simpler distributions, commonly
used within EVT, into one (equation (2.7)). The functions Gumbel, Frechet and Weibull are also
known as the Type I, II and III extreme value distributions. GEV allows a continuous range of
possible distribution shapes and therefore allows the data to decide the most appropriate one,
i.e. the GEV will converge to either distribution. If ξ, from the distribution parameter set up θ
= (µ, σ, ξ), approaches zero, the data converges to Gumbel distribution characterized by expo-
nentially decreasing tails. If ξ is negative, the data will fit the Weibull distribution wherein the
tails decrease as a polynomial. The data will approach the Frechet distribution if ξ is greater
than zero, i.e. the tails are finite [8]. The tails represent the historical data’s most extreme values
and the GEV’s asymptotic justification is particularly useful for extrapolating beyond the range
of the data [9]. The cumulative distribution function can be expressed as equation (2.7) and has
a solution if (1 + ξ(x−µσ )) > 0.

Ξ(x) = exp{−(1 + ξ(
x− µ
σ

))
−1
ξ } (2.7)

2.4.2 Parameter estimation in NEVA: Bayesian inference

NEVA uses Bayesian inference to estimate the posterior distributions the probability distribution
of an unknown quantity of the parameters β1 = (µ1, µ0, σ, ξ), β2 = (µ1, µ0, σ1, σ0, ξ) and θ
= (µ, σ, ξ) [8]. The inference is based on Bayes theorem, a probability theory theorem used for
determining conditional probabilities, in other words, the probability of an outcome given another
outcome. The posterior distributions are estimated based on knowledge of the prior distribution
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Figure 2.2: The General Extreme Value (GEV) distribution for the case of Weibull (solid line), Gumbel
(dashed line) and Frechet (dotted line) distributions. The GEV has a function value, Ξ(x), for all
x. The shape of the GEV is determined by the parameters θ = (µ ,σ, ξ). If ξ < 0, GEV converges
to Weibull distribution, meaning the tails of the distribution decrease exponentially. If ξ = 0, GEV
converges to Gumbel distribution and the tails of the distribution converge as a polynomial. If ξ > 0,
GEV converges to the Frechet distribution, meaning the tails of the distribution are finite.

and the observation vector, ~y = (yt=1:Nt), where Nt is the number of observations. The prior
distribution, p(β|x) and p(θ), aim to encode prior knowledge of the parameters by restricting
the possible range of parameters of a GEV distribution based on information from relevant case
studies. The information from historical data is quantified using the likelihood concept, i.e.
the probability to observe what has actually been observed. Assuming independence between
observations, the likelihood corresponds to the joint pdf of a random vector calculated as the
product of its marginal pdfs, (equation (2.8) and equation (2.10)). This requires that the prior
distribution is specified. This study uses the default prior distributions provided by NEVA, i.e.
the non-informative normal distributions for the location and scale parameters and a normal
distribution with a standard deviation of 0.3 for the shape parameter. The historical data and
the prior distribution are used to estimate the posterior distribution through multiplication,
equation (2.8) and equation (2.10), where x(t) denotes the covariate values of the parameters βλ
= (β1, β2) under the non-stationary assumption. The posterior distribution provides information
about the parameters for estimating return levels. [51]

p(βλ|~y, x) ∝ p(~y|βλ, x)p(βλ|x) (2.8)

p(~y|βλ, x) =

N∏
t=1

p(yt|βλ, x(t)) =

N∏
t=1

p(yt|µ(t), σ(t), ξ) (2.9)

p(θ|~y, x) ∝ p(~y|θ, x)p(θ|x) =

N∏
t=1

p(yt|θ)p(θ) (2.10)
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The Differential Evolution Markov Chain (DE-MC) is used to optimize over parameter space.
This means that the DE-MC provides a large number of realizations from the parameter joint
posterior distributions and allows estimation of the median and the 95th percentile of the µ(t) and
σ(t). The DE-MC is based on the Markov Chain Monte Carlo method (MC-MC). The MC-MC
generates a random walk in which the asymptotic distribution is the posterior distribution. MC-
MC uses another distribution called the proposal or jump distribution to propose candidate values
for the posterior distribution. The candidate values are then accepted or rejected, according to a
given acceptance rule. NEVA uses the method criterion R̂ to assess convergence of the sampling
approach and is set to 1.1. For further reading on this topic see Cheng and AghaKouchak (2014)
[8].

2.4.3 Simulation strategy in NEVA

Given the distribution parameters’ distributions, the return levels for 10-, 25- and 50- year return
periods were estimated from values generated from equation (2.6). Annual maximum precipita-
tion data records from stations holding trends in time (table 2.1) were used for the simulations
in NEVA. The non-stationary return levels were estimated with location and scale parameters
corresponding to future climate conditions: 50th percentile of the parameter distribution (here-
after, medium risk); and 95th percentile of the parameter distribution (hereafter, low risk). To
start, only the location parameter was set as time-invariant, but to improve model performance
the scale parameter was also allowed to be time-invariant. The default prior distributions sug-
gested by NEVA were applied (table 2.2) [8]. The number of evaluations was set to 50 000. The
median of the ensemble of simulations were used to estimate return levels and the 5th and 95th
percentiles described the uncertainty bounds.

The model’s performance using the NEVA output was assessed by comparing the estimated and
empirical return levels. The empirical return levels were calculated from the empirical cumulative
distribution function derived for each station, and inserted into equation (2.2). If the empirical
values laid within the ensemble, the simulation was considered good. The posterior distributions
of the parameters were compared with the normal distribution to check the simulation’s con-
vergence. In the stationary case, the quantile quantile plot (QQ-plot) between observed annual
maximum precipitation and theoretical values was also analyzed to examine the fit of the model.

The model performance improved for stations 5, 7, 9, 12 and 18 when both µ(t) and σ(t) were
set as time-invariant. Two time-invariant distribution parameters were only applied to 1-day
precipitation events.
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Table 2.2: The range of parameters in the GEV distribution allowed for the prior distributions. The
intervals are the default settings in NEVA. σ and β are the scale and shape parameters, σ1, σ0, µ1

and µ0 are the regression parameters for the time-invariant location and scale parameter. Either σ
or σ1 and σ0 were applied.

Parameter Lower boundary Upper boundary
σ 0 100
β 0 0.3
µ1 0 100
µ0 0 100
σ1 0 10
σ0 -100 100

2.5 Intensity Duration Frequency Curves

Intensity Duration Frequency (IDF) curves were developed for 10-, 25- and 50-year return pe-
riods. The estimated return levels were plotted against duration for the non-stationary and
stationary assumption respectively. The return levels are estimated from the median of the en-
semble generated by NEVA while the 5th and 95th percentile constituted uncertainty bounds
(section 2.4.2 and section 2.4.3)
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Chapter 3

Results

3.1 Trend Analysis and change in distribution

Of the 139 stations surveyed, 20 stations showed positive trend in time (p-value was lower than
0.05) and 1 station showed a negative trend (station 13) for daily annual maximum precipita-
tion (table 6.1 in appendix). The significance level was low in general. For precipitation on a
multi-daily scale (2-day, 3-day...7-day) more stations had increasing trends for higher durations
(figure 3.1). However, only 12 stations had a trend through all durations. These stations (station
3, 4, 7, 8, 9, 11, 12, 14, 16, 17, 19 and 20) (table 2.1 in section 2.2) were further investigated.
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Figure 3.1: Proportion of stations showing a significant trend (p=0.05) in annual daily maximum
precipitation. The trends are tested with the Mann-Kendall trend test. 20 stations showed trend for
daily resolution, while 29, 39, 36, 35, 35 and 37 stations showed increasing trends for 2-day, 3-day,...
7-day precipitation events.
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The cumulative distribution function (cdf) for the second part of the investigated time interval,
the last 25 years approximately, showed higher intensities than the first interval at all stations
and also showed an increase in annual maximum precipitation (figure 3.2). The difference in
distribution between the first and second part of the 50 years was significant only for a fraction
of the stations with increasing trends in annual maximum precipitation (figure 3.3, figure 3.4,
figure 3.5, figure 3.6).
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Figure 3.2: The change in cumulative distribution function of the daily annual maximum precipitation
for station 3, 14 and 19. The distribution shifted forward in all three cases, meaning that higher
intensities have become more frequent during the last 25 years.
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Figure 3.3: Daily annual maximum precipitation;
Stations with increasing trend (20) and change in
distribution (15).

Figure 3.4: 3-day annual maximum precipitation;
Stations with increasing trend (36) and change in
distribution(23).

Figure 3.5: 5-day annual maximum precipitation;
Stations with increasing trend (35) and change in
distribution (20).

Figure 3.6: 7-day annual maximum precipitation;
Stations with increasing trend (37) and change in
distribution (23).
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3.2 Daily return levels estimated with NEVA

The median of the return levels derived with NEVA represent the estimated return levels for
particular return periods assuming stationary (figure 3.7) and non-stationary conditions (fig-
ure 3.8). The empirical values indicate the performance of the model and as can be seen for
station 3, (figure 3.7 and figure 3.8) they was within the ensemble. In figure 3.9 and figure 3.10,
non-stationary return levels were estimated with parameters for conditions 50 years (medium
risk) and 95 years (low risk) into the future, respectively.

Figure 3.7: Stationarity; highest daily precipitation (return level; mm/day) versus recurrence interval
(return period) for station 3 estimated with the NEVA software package. Points are observed values
and lines are estimated values. The grey colored ensemble are the return levels’ realizations for the
corresponding return period. The median, 5th and 95th percentiles are calculated within the ensemble
for each return period.

Figure 3.8: Non-stationarity (1963-2013); Highest daily precipitation (return level; mm/day) versus
recurrence interval (return period) for station 3 estimated with the NEVA software package.The grey
colored ensemble are realizations of the return levels for the corresponding return period. The median,
5th and 95th percentiles are calculated within the ensemble for each return period.

Almost all stations with increasing trends showed positive absolute and relative differences be-
tween return levels estimated assuming non-stationary and stationary conditions, respectively,
(figure 3.11, figure 3.12) for a 25-year return period. The relative difference ranges from 7 % to
just over 55 % (medium risk) and 9 % to 77 % (low risk). Station 8 has the largest absolute
difference; 27 mm/day (medium risk). The relative difference between non-stationary and sta-
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Figure 3.9: Non-stationarity return levels (medium risk) of daily precipitation (mm/day) versus re-
currence interval (return period) estimated with the NEVA software package. The yellow lines are
the estimated values based on the 50th percentile of parameter distribution). The median, 5th and
95th percentiles are calculated from the ensemble of estimates for each return period.

Figure 3.10: Non-stationarity return levels (high risk) of daily precipitation (mm/day) versus recur-
rence interval (return period) estimated with the NEVA software package. The yellow lines are the
estimated values based on the 95th percentile of parameter distribution). The median, 5th and 95th
percentiles are calculated from the ensemble of estimates for each return period.

tionary return levels (medium risk) for 10- and 50-year storms are found in table 3.1 (for low
risk see appendix)
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Figure 3.11: Medium risk, the absolute difference between the highest daily precipitation (return
level; mm/day) for a return period of 25 years, estimated assuming non-stationary and stationary
conditions, respectively (upper graph), for the 20 stations with significant increasing trends in daily
annual maximum precipitation. The lower graph shows relative difference (%). Station 8 has the
largest difference between non-stationary and stationary return levels.
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Figure 3.12: Low risk, the absolute difference between the highest daily precipitation (return level;
mm/day) for the return period of 25 years, estimated assuming non-stationary and stationary condition
respectively (upper graph), for the 20 stations with increasing trends in time. The lower graph shows
relative difference (%). Station 8 has the largest difference between non-stationary and stationary
return levels.
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Table 3.1: Medium risk; The relative difference between the highest daily precipitation (return level;
%) for 10- and 50-year return periods, estimated assuming non-stationary and stationary conditions,
respectively, for the 20 stations with increasing trends in time. The medians (p50) are boldfaced,
representing the estimated return level, while the 5th and 95th percentile (p5 and p95) constitute
uncertainty bounds.

T 10 yr 50 yr
Station p5 p50 p95 p5 p50 p95
1 -14.8 9.7 37.4 -36.5 7.5 67.5
2 10.7 34.4 58.2 -2.7 24.1 51.6
3 -17.2 7.2 31.5 -32.0 3.2 40.2
4 2.5 26.7 46.8 -10.5 20.7 45.4
5 14.5 29.5 42.1 6.2 25.9 40.0
6 -7.8 23.8 52.7 -30.2 12.4 51.8
7 -15.0 11.6 41.2 -28.1 0.1 29.6
8 33.4 53.4 71.6 17.2 42.0 59.9
9 -6.4 22.5 50.3 -32.1 -1.9 35.2
10 14.4 34.3 54.8 4.0 28.7 53.1
11 -2.4 17.2 38.1 -21.9 10.7 41.6
12 -1.3 30.1 62.7 -32.4 2.2 43.4
14 13.2 44.2 78.6 -7.4 25.5 61.8
15 11.7 31.1 52.9 0.1 27.0 48.4
16 -1.8 24.1 49.7 -34.5 11.3 59.1
17 5.7 29.8 53.9 -7.4 22.1 54.4
18 8.3 33.7 62.8 -15.6 18.2 45.7
19 -3.7 14.0 31.4 -21.8 7.9 38.6
20 -1.1 17.9 38.6 -18.1 12.3 48.1
21 -6.0 8.5 22.8 -4.8 16.2 47.2
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3.3 Multi-daily return levels estimated with NEVA

Non-stationary return levels are estimated to be higher than stationary return levels among the
investigated stations, for different durations and return periods. However, the magnitude of
the difference between them varies. At station 3, the size of absolute and relative differences
increases with increasing duration (figure 3.13). Station 14 and 19 show decreasing absolute
difference with increasing duration, while the relative difference does not change consistently
with increasing duration (figure 3.14). In table 3.3 and table 3.2 various patterns in absolute
and relative difference are indicated, depending on duration among the locations. Further, the
absolute and relative differences decrease with increasing return level, except for station 3, where
the absolute difference increases slightly (figure 3.13 and figure 3.14). The uncertainty bounds
increase with increasing return period.
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Figure 3.13: Station 3, the absolute difference between the highest daily precipitation (return level;
mm/day) for 10-, 25- and 50-year return periods, estimated assuming non-stationary and stationary
condition respectively (upper graph) for the medium risk case. The lower graph shows the relative
difference (%). Both the absolute and the relative difference increase with duration, but they remain
constant with increasing return period.
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Table 3.2: Medium risk, the absolute difference between the highest daily precipitation (return level;
mm/day) for a 25-year return period, estimated assuming non-stationary and stationary conditions,
respectively. The return levels are estimated for the 12 stations holding a trend for 1, 2, 3, 4, 5, 6
and 7 days. The medians (p50) are boldfaced and represent the estimated return level, while the 5th
and 95th percentile (p5 and p95) constitute the uncertainty bounds.

Duration 3-day 5-day 7-day
Station p5 p50 p95 p5 p50 p95 p5 p50 p95
3 -4.0 2.3 9.0 -2.0 2.1 5.3 0.9 3.8 6.3
4 -3.6 6.6 14.9 -4.4 5.0 9.3 -2.8 2.5 8.4
7 -0.9 5.2 10.2 -2.8 2.0 6.8 -2.0 1.5 5.1
8 1.5 6.2 11.1 1.9 5.2 8.4 0.4 3.2 6.1
9 -2.4 3.8 11.8 4.1 8.4 13.5 -1.9 2.5 5.7
11 -2.8 3.8 10.1 -1.8 1.9 5.3 0.1 2.6 5.1
12 -6.1 3.3 8.7 -2.1 3.1 7.1 4.2 7.0 10.8
14 0.0 7.6 15.5 3.9 8.3 13.3 1.0 4.7 9.0
16 -9.1 4.3 10.6 -5.5 2.3 9.6 -0.4 2.5 5.2
17 -0.0 8.3 16.0 0.6 7.0 11.5 0.7 4.8 9.1
19 -1.4 3.9 8.5 0.5 3.5 6.7 -0.7 2.2 4.5
20 4.9 9.1 15.3 2.7 5.0 7.2 1.1 4.3 7.0

Table 3.3: Medium risk, the relative difference between the highest daily precipitation (return level; %)
for a 25-year return period, estimated assuming non-stationary and stationary conditions, respectively.
The return levels are estimated for the 12 stations holding a trend for 1, 2, 3, 4, 5, 6, 7 days. The
medians (p50) are boldfaced and represent the estimated return level, while the 5th and 95th percentile
(p5 and p95) constitute the uncertainty bounds.

Duration 3-day 5-day 7-day
Station p5 p50 p95 p5 p50 p95 p5 p50 p95
3 -12.9 8.8 38.4 -9.6 11.3 30.1 5.9 25.6 44.6
4 -10.2 24.5 59.5 -15.4 25.6 51.9 -13.2 14.8 54.9
7 -2.7 18.7 39.7 -12.3 10.8 36.4 -11.1 9.8 33.4
8 4.9 22.7 42.4 9.5 26.1 42.6 2.2 19.7 37.8
9 -7.5 12.8 42.2 17.9 39.2 69.3 -10.4 15.3 39.1
11 -9.1 14.6 40.4 -9.0 10.4 29.6 0.4 17.4 34.9
12 -17.2 12.3 35.9 -9.0 16.6 39.3 25.2 47.1 74.0
14 0.1 26.8 57.4 19.0 44.8 74.8 6.3 30.1 61.1
16 -20.5 13.4 39.4 -19.0 10.5 48.8 -2.4 14.4 33.6
17 -0.1 28.1 57.7 2.3 31.6 57.3 4.0 27.8 57.5
19 -4.9 15.5 35.6 2.6 19.5 39.2 -3.8 14.0 30.3
20 18.8 36.3 61.8 14.5 27.2 40.9 6.5 27.9 46.1
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Figure 3.14: Station 14 and 19, the absolute difference between the highest daily precipitation (return
level; mm/day) for 10-, 25- and 50-year return periods, estimated assuming non-stationary and
stationary condition, respectively (uppermost and third graph for station 14 and 19 respectively), for
the medium risk case. The second and lowermost graphs, for station 14 and 19, respectively, show
the relative difference (%). Both the absolute and the relative difference increase with duration, but
remain constant with increasing return period.
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3.4 Intensity Duration Frequency Curves

The design storms estimated from the non-stationary Intensity, Duration, Frequency (IDF)
curves exceed the design storms estimated from the stationary IDF-curves. At station 3, the non-
stationary IDF-curve predicts a 10-year 1-day storm to be 47.7 mm/day, whereas the stationary
IDF-curve predicts the same storm to be 44.2 mm/day. The same design storms for station 14
are 83.3 mm/day and 57.3 mm/day and for station 19, 51.8 mm/day and 25.7 mm/day. The
difference is more substantial at low return periods.
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Figure 3.15: The non-stationary and stationary IDF-curves for Station 3, 14 and 19. The uncertainty
bounds belong to the non-stationary estimates. The stationary IDF-curve is below the non-stationary
for all three locations. (Figured generated with help from shadedplot.m (c) 2014 Savyasachi Singh.
All rights reserved)
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Chapter 4

Discussion

For the 20 out of 139 stations showing increasing trends in daily annual maximum precipitation,
the return levels estimations under a non-stationary assumption was up to about 50 % higher than
return levels estimated under a stationary assumption (figure 3.11). The difference was almost
consistent for increasing durations (1-day to 7-day) and return periods (table 6.2 and table 3.2).
The fact that increasing trends (section 3.1) in annual maximum precipitation are more common
than negative trends supports the suggestion that climate change increases atmospheric moisture
[64]. Furthermore, an increase in extreme precipitation events increases the risk of high flows
and flooding. The higher estimated return levels for a non-stationary assumption relative to a
stationary one indicates the need to consider climate change when constructing design storms
in the future [7]. Nevertheless, most locations in this study did not show a trend in annual
maximum precipitation over time. The scattered location of the 20 sites with increased return
levels indicates that atmospheric circulation patterns as well as local wind and temperature
conditions affect extreme precipitation. These aspects are not explicitly considered in this study.

4.1 Trends in annual maximum precipitation

A key result is finding increasing trends in annual maximum precipitation, an indication whether
the particular location is affected by climate change in terms of precipitation. The fact that 20
stations out of 139, or approximately 15 %, showed such a positive trend indicates an ongoing
climate change concerning extreme precipitation events. This argument is reinforced by the
shift into more intense annual maximum precipitation during the last 25 years, which was ob-
served for most of the stations with positive trends. Furthermore, on a multi-daily scale, up
to approximately 40 % of the locations showed increasing trends, in line with previous studies
demonstrating that Sweden has seen more, longer periods of precipitation extremes due to in-
creased winter rains [3]. The regional trend distribution partly agrees with previous studies in
that most of these trends are found in south eastern Sweden, however trends were also observed
in the west and north.[3]

24



The nature of extreme precipitation events is complex: The local atmosphere is highly influenced
by global circulation patterns and storm tracks. The Clausius-Clapeyron relationship may not
predict extreme precipitation well in regions where circulation change is a major factor, such
as mid to higher latitudes [43]. The North Atlantic Oscillation (NAO), which pushes moist
air over Sweden with strong westerly winds in its positive phase, is believed to greatly impact
extreme precipitation events [55]. NAO has trended towards this phase (strengthened mid-
latitude westerlies) over the past three or four decades. [45]

Seasonality also affects the regional distribution of trends in annual maximum precipitation [71].
The most extreme event from year to year might take place at different seasons. Moderate,
prolonged winter rain or snowfall might increase annual maximum precipitation on a multi-daily
scale, while local, summer rain showers might dominate the results for the daily scale.

4.2 The effect of assuming non-stationarity when estimat-
ing return levels

This study’s most vital insight is the higher estimated design storms when considering non-
stationarity, i.e. climate change. The absolute and relative differences in highest daily annual
precipitation (return levels) varied among locations and ranged between 6.7 mm/day (9%) to 27
mm/day (+48 %) for a 25-year recurrence interval (return period). Strict comparison between
the stations is not possible due to varying data records. The highest absolute difference was
shown in south-east Sweden, yet substantial differences were also estimated in the north, central
and south-west Sweden (section 3.2).

The absolute difference in return levels for longer durations (2-day, 3-day...7-day precipitation
events) show higher values for design storms estimated assuming non-stationarity. The size of
the absolute difference for individual stations decreased for longer durations, expect for station
3, where the absolute difference increased. This indicates that the non-stationary assumption
strongly affects the shorter durations. The difference in non-stationary return levels relative
to stationary return levels decreases or varies with increasing duration, depending on station.
This hints at the actual impact of non-stationarity for different durations. At station 19, for
example, the difference between the non-stationary and stationary return level is higher regarding
relative change for the 5-day precipitation event than for the 3-day and 7-day precipitation
events, however the absolute difference is highest for the 1-day event table 3.3. Furthermore,
the absolute and relative difference between return levels decreased in general for higher return
periods (figure 3.13, figure 3.14, table 3.1, table 6.2), indicating a more substantial influence of
non-stationarity on return levels with shorter recurrence intervals.

The uncertainty bounds for the absolute difference in non-stationary and stationary return levels
decreased with increasing duration, due to decreased variability in the data records for longer du-
rations, i.e. the data were mean values of daily precipitation. The uncertainty bounds increased
for the corresponding relative differences because the influence of the estimated return levels on
the ensemble was extracted. Moreover, the uncertainty bounds increased with increasing return
period (figure 3.13 and figure 3.14), thereby reducing the reliability of predicted design storms
for higher return periods [7].
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4.3 Future climate scenarios, socio-economic aspects and
the definition of non-stationarity

Future climate scenarios (RCP8,5) provided by the Swedish Meteorological and Hydrological
Institute, show that the difference in annual maximum daily precipitation increases 20 to 30 %
in 2071-2100 compared to 1971-2000 for all of Sweden. The annual maximum 7-day precipitation
increases 15 to 30 % for the same time interval (Scenarios are found at smhi.se/klimat). This
is in line with the results in section 3.2 and section 3.3, indicating that design storms assuming
extreme precipitation will stay the same over time underestimate extreme events compared to
estimates assuming that the extreme precipitation might increase over time.

Within hydraulic and hydrological engineering, applying appropriate design storms is crucial
for designing reliable and durable construction works. The design affects societal costs and the
feasibility of proposed construction work solutions [58, 47]. We show that using a stationary
approach when deriving design storms potentially underestimates extreme precipitation events
at some locations in Sweden. This indicates possible undersized constructions. On the other
hand, the application of a non-stationary approach may overestimate design storms at sites with
no indications of a future increase in extreme precipitation events. This can lead to oversized and
unnecessarily expensive constructions. In Sweden, climate factors derived from future climate
scenarios are commonly applied to account for climate change within construction works. This
simple approach is more generalized but might increase the risk of over-sized construction works.

Another discussion topic is if, by definition, the non-stationary approach really leaves stationarity
out. For example, when the distribution characteristics of the hydrological variable change with
time, the mean value will be a deterministic function of time and not from random variables,
thereby introducing stationarity. Montanari and Koutsoyiannis (2014) argue that changes in
processes statistics, which are unpredictable or unknown, imply a stationary approach and the
non-stationary description is only justified if the evolution of hydrological characteristics and
parameters in time are known [47]. The parameters estimated with NEVA for the non-stationary
approach (θ, β1 and β2; equation (2.3)) need to be given a physical explanation in terms of
information about the change in the atmosphere’s temperature and consequently water-vapor
content. The method assumes climate change will increase precipitation linearly over time (C-C
relationship) and deserves the description of being non-stationary. [47]

4.4 Model performance and Method limitations

Visual inspection of the NEVA output and the QQ-plots (section 3.2 and section 6.3) were
used to investigate the model’s performance. The empirical values were within the ensemble at
all investigated stations, but at station 9 and 12 the empirical return levels were close to the
5th percentile of the ensemble, indicating that the model overestimates the return level. The
quantiles of the annual maximum precipitation is fairly proportional to the empirical values in
the QQ-plots figure 6.1, justifying the chosen parameter set up for the GEV distribution in the
stationary case.
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Data quantity and quality are both crucial for prediction reliability. Continuous precipitation
records extending far back in time are rare and data quality varies as measurement techniques
evolve. This study assumes that the SMHI data represents the precipitation well enough, al-
though a comprehensive update to the weather stations in the 1970’s might have introduced a
bias into the analysis, thus affecting the results. Furthermore, difficulties and uncertainties in
trend analysis are greater for extreme value analysis due to the infrequency of extreme events.
50 year long data records are a stated guideline for extreme value analysis regarding annual
maximum precipitation. However, paleoclimatic records indicate that in many regions of the
world the past decades do not fully represent natural climate variability. Hence, these trends
found in extreme events over a 50-year period might not be caused by climate change [58].

The Mann-Kendall trend test is a non-parametric test of monotonic trends, i.e. a gradual change
in relation to an independent variable (e.g. time) that is consistent in direction. The method
needs long continuous records but can lack insight into a trend’s causes as well as have difficulty
accounting for variability caused by other climate variables, such as wind direction. For example,
in southern Sweden wind effects are of special interest when analyzing precipitation due to its
proximity to storm tracks. Before performing trend analysis the influence of covariate variables
such as wind direction can be extracted from the data. Selecting the appropriate covariate is
critical and can significantly affect the results and further analysis. The Mann-Kendall trend
test does not explicitly account for step changes in observations, i.e. abrupt shifts. Including
step-change analysis could provide more information about the precipitation characteristics.

NEVA is based on the assumption that precipitation intensities increase linearly with time (non-
stationarity). Introducing non-stationarity increases the variability of the estimated return levels
by increasing the number of parameters. However, if the assumption of non-stationarity captures
the observed behavior of extreme precipitation events, the reduced bias in the estimated return
levels compensates for the increased uncertainty due to more parameters [47]. The definition
of non-stationarity is not designed to capture cyclical patterns of the observations. Also, the
estimated return levels are based on point measurements. The local precipitation variation can
be substantial, which limits the validity and hence the application area for the estimated design
storms [26].
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4.5 Recommendation for future studies

In Sweden, the North Atlantic Oscillation (NAO) is believed to affect precipitation in general
and also the likelihood of extreme events [55]. For that reason, future research in this area
should introduce the relation between NAO and annual maximum precipitation into extreme
value analysis, i.e. physically based covariates [31] . Then, more representative estimates of
return levels could be achievable and offer more reliable IDF-curves for infrastructure design.

To increase the spatial validity of the estimated return levels, an approach that includes the ho-
mogenization of data records could be applied. This would increase the IDF-curves’ applicability,
although that approach might reduce the variability of extreme precipitation events at certain
locations [39, 41, 40]. Longer data records should be analyzed to test if the derived trends in
extreme precipitation can be related to climate change or not, since previous studies emphasize
the difficulties accounting for long term natural variability [3]. Finally, using one or two time-
invariant distribution parameters could improve model performance as well as predicted return
levels.
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Chapter 5

Conclusions

Global warming is believed to increase and/or intensify extreme precipitation events by increasing
average global temperature. In determining design storms for infrastructural design and failure
risk assessment, it is commonly assumed that the statistics of extreme precipitation do not change
significantly over time, a notion known as stationarity. This notion assumes that the statistics of
future extreme precipitation events will be similar to those of historical observations. Therefore,
the consequences of using a stationary assumption as an alternative to a non-stationary frame-
work that does consider temporal changes in statistics of extremes was investigated. Stationary
and non-stationary return levels for 10-year to 50-year extreme precipitation events for different
durations (1-day, 2-day, ..., 7-day precipitation events), based on Sweden’s observed daily precip-
itation, were evaluated. Non-stationary frequency analysis was only considered for stations with
statistically significant trends over the past 50 years at 95% confidence. Non-stationary return
levels were estimated using the General Extreme Value distribution with time-dependent param-
eters, inferred using a Bayesian approach. Finally, the estimated return levels were compared in
terms of duration, recurrence interval and location.

The outcome indicates that precipitation extremes have intensified during the last 50 years and
led to higher estimated return levels at 15 % of the examined locations in Sweden. The largest
relative difference between the two approaches was about 40 % for the medium risk (50th per-
centile of parameter distribution) and up to 60 % for the low risk (95th percentile of parameter
distribution). The absolute difference in estimated return levels assuming non-stationary and
stationary conditions, respectively, decreases with increasing duration. This indicates that the
assumption of stationarity is more severe on a daily scale. Climate factors, frequently used in
Sweden for adapting infrastructure design to climate change, might contribute to underestimat-
ing and sometimes overestimating extreme events at individual locations. NEVA provides a
more site-specific estimate of design storms that might give valuable information to construc-
tion projects. However, the assumption that precipitation increases linearly with time might
be a serious simplification and thus reduce the model’s predictability in areas such as northern
Europe.[55]
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The 20 stations showing an increasing trend in annual maximum precipitation over time con-
stitute only a minor fraction of all investigated stations. This substantiates studies that have
low confidence that climate change will bring intensified precipitation to Europe [58]. Moreover,
the number of stations holding a trend increased up to 30 % for longer durations, a finding
that supports studies showing prolonged precipitation events may cause flooding in Sweden [3].
Assuming 50 years does not overcome the natural variability in extreme precipitation events,
extending the records farther back in time may remove trends and question the reliability of the
predicted design storms [58].
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Chapter 6

Appendix

6.1 P-values for trends in annual maximum precipitation

Table 6.1: Significance level (p-value) for all stations showing a significant trend in daily annual
maximum precipitation. Significance levels for 2, 3, 4, 5, 6, 7 days are also presented. Twelve
stations held a significant trend through all durations, namely stations 3, 4, 7, 8, 9, 11, 12, 14, 16,
17, 19 and 20.

Station 1-day 2-day 3-day 4-day 5-day 6-day 7-day
1 0.01 0.02 0.04 0.23 0.16 0.13 0.019
2 0.004 0.14 0.12 0.21 0.16 0.18 0.32
3 0.03 0.03 3.54 E-3 1.7 E-3 2.4 E-3 9.8 E-4 1.6 E-3
4 0.03 0.006 0.02 2.5 E-3 7.6 E-3 6.7 E-3 9.7 E-3
5 0.02 0.02 4.5E-2 0.20 0.20 0.13 0.20
6 0.02 0.01 0.01 0.06 0.09 0.04 0.04
7 0.01 0.02 0.02 3.6 E-3 6.1 E-3 2.1 E-3 1.1 E-3
8 1.3 E-3 3.0 E-5 2.7E-3 1.9 E-3 3.6 E-3 0.01 0.02
9 0.02 5.3E-3 0.02 0.02 0.01 0.01 0.01
10 0.02 0.005 2.3 E-3 0.02 0.03 0.08 0.12
11 3.3 E-3 1.6E-3 0.02 9.3 E-2 6.7 E-3 7.7 E-3 6.7 E-3
12 0.05 0.02 1.3 E-3 2.9 E-3 4.7 E-3 3.4 E-3 3.6 E-3
13 0.02 0.06 0.31 0.15 0.19 0.14 0.33
14 0.005 0.045 0.01 6.1 E-3 2.5 E-3 1.3 E-3 1.5 E-3
15 0.04 0.03 0.01 0.11 0.14 0.08 0.02
16 6.3E-3 3.0 E-5 1 E-5 1.0 E-4 1.0 E-4 4.0 E-4 8.0 E-4
17 0.047 6.4 E-3 4.5 E-4 2.9 E-3 1.1 E-2 1.6 E-3 1.0 E-3
18 0.01 0.03 0.07 0.01 0.01 0.04 0.04
19 0.01 0.01 0.02 4.5 E-3 9.1 E-3 7.4 E-3 2.4 E-3
20 0.01 0.003 6.8 E-3 0.01 0.01 0.01184 5.4 E-3
21 0.02 0.01 0.02 0.01 0.00664 3.01 E-3 5.0 E-3
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6.2 Differences in non-stationary and stationary return lev-
els

Table 6.2: Medium risk; The absolute difference between the highest annual daily precipitation (return
level; mm/day) for 10- and 50-years return periods, estimated assuming non-stationary and stationary
conditions, respectively, for the 20 stations with increasing trends. The medians (p50) are boldfaced,
representing the estimated return levels, while the 5th and 95th percentile (p5 and p95) constitute
uncertainty bounds.

T 10 years 50 years
Station p5 p50 p95 p5 p50 p95
1 -10.0 5.5 19.4 -53.7 7.0 54.2
2 5.9 17.6 29.0 -2.2 15.1 30.4
3 -8.7 3.2 13.0 -29.4 2.1 23.7
4 1.2 10.9 18.2 -7.6 10.9 22.6
5 6.9 12.7 17.6 3.8 13.4 19.7
6 -4.7 11.9 25.4 -32.1 8.8 34.2
7 -8.4 5.9 19.7 -25.6 0.1 19.2
8 18.4 27.8 35.5 12.0 26.0 34.6
9 -3.9 11.9 24.7 -35.9 -1.6 26.2
10 6.2 14.3 22.0 2.3 14.3 25.6
11 -1.3 7.8 16.1 -20.1 7.2 24.6
12 -0.7 15.2 29.1 -39.1 2.0 29.0
14 8.2 25.4 42.5 -7.5 21.2 46.8
15 7.5 18.0 29.1 0.1 21.6 33.8
16 -1.0 11.8 23.3 -46.5 8.9 43.7
17 3.2 17.1 29.4 -6.5 17.3 39.4
18 4.9 17.9 32.0 -15.1 12.4 30.4
19 -1.8 6.3 13.6 -17.9 4.9 21.9
20 -0.5 8.2 16.7 -13.7 7.3 26.1
21 -3.0 4.0 10.6 -3.0 9.2 26.0
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Table 6.3: Low risk; The absolute difference between the highest annual multi-daily precipita-
tion(return level; mm/day) for 10- and 50-year return periods estimated assuming non-stationary
and stationary conditions, respectively. The return levels are estimated for the 12 stations with trends
for 1, 2, 3, 4, 5, 6, 7 days. The medians (p50) are boldfaced, representing the estimated return level,
while the 5th and 95th percentile (p5 and p95) constitute uncertainty bounds.

T 10 yr 50 yr
Station p5 p50 p95 p5 p50 p95
3 -2.7 3.7 10.4 -1.3 4.0 8.8
4 0.4 12.0 21.9 -1.7 8.0 14.1
7 1.3 8.4 14.9 -2.1 3.0 8.5
8 4.5 10.5 17.5 3.9 8.4 12.5
9 0.1 7.6 17.2 8.6 13.5 19.3
11 -1.9 5.9 13.9 -1.5 3.0 7.6
12 -3.3 6.6 12.8 -0.1 5.5 10.3
14 4.4 13.0 22.5 8.2 13.2 19.2
16 -6.1 7.8 15.0 -3.3 4.6 12.4
17 4.4 14.3 23.9 3.1 11.5 17.9
19 -0.0 6.7 12.5 1.8 5.6 10.0
20 9.1 14.7 22.4 4.8 7.7 10.6

Table 6.4: Low risk; The relative difference between the highest annual multi-daily precipitation(return
level; %) for 10- and 50-year return periods, estimated assuming non-stationary and stationary con-
ditions respectively. The return levels are estimated for the 12 stations with trends for 1, 2, 3, 4, 5,
6, 7 days. The medians (p50) are boldfaced, representing the estimated return level, while the 5th
and 95th percentile (p5 and p95) constitute uncertainty bounds.

T 10 yr 50 yr
Station p5 p50 p95 p5 p50 p95
3 -8.9 14.2 44.4 -6.5 21.9 49.8
4 1.2 43.9 88.2 -6.5 41.3 77.3
7 4.3 30.5 58.1 -9.7 15.9 45.6
8 15.3 38.4 66.2 18.9 41.9 63.7
9 0.2 25.2 61.2 38.5 64.1 97.7
11 -6.4 22.2 56.2 -7.6 16.5 42.9
12 -8.9 24.1 51.6 -0.4 29.5 57.8
14 13.8 45.7 83.3 39.7 71.0 108.2
16 -14.2 24.3 54.7 -12.5 21.0 63.7
17 12.7 47.9 85.1 12.9 51.6 87.2
19 -0.0 26.1 51.3 9.2 31.0 58.4
20 35.6 58.4 91.6 25.6 42.4 59.7
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6.3 Model performance
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Figure 6.1: Quantiles for daily annual maximum precipitation versus quantiles of the General Extreme
Value distribution for stations 3, 14 and 19 (QQ-plot). The data fits the particular GEV distributions
fairly well, except at the high end of the range.
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Figure 6.2: The distributions of the General Extreme Value (GEV) distribution parameters, β1 =
(µ1, µ0, σ, ξ) for stations 3, 14 and 19, assuming non-stationary conditions. The distributions are
compared with the normal distribution to investigate convergence to one final GEV, from which the
return levels for different return periods can be found(equation (2.2) and equation (2.3)).
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