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Abstract 

Snow cover plays an important part in the global surface energy and water balance. The 
reflective properties of snow cover results in a high albedo which reflects sunlight and helps 
keeping the earth cool. Many regions rely on snow melt as a source of drinking water and 
irrigation for agriculture. With global warming the snow cover dynamics are changing and the 
demand for accurate snow cover maps is higher than before to better monitor the snow cover and 
its changes. Especially in high latitude regions such as the Swedish mountain ranges where 
challenging conditions make snow cover mapping using remote sensing especially difficult. This 
study aims in the first part to validate the current optical-based snow cover product from 
Sentinel-2 (FSCOG) and microwave-based snow cover product from Interactive Multisensor 
Snow and Ice Mapping System (IMS) in the mountainous regions of Sweden on ground-based 
snow depth measurements. The second part aims to improve snow cover mapping by combining 
the two snow cover products through spatiotemporal fusion which takes advantage of the high 
temporal resolution of IMS and the high spatial resolution of Sentinel-2 FSCOG. 

Both snow cover products achieve an accuracy above 90% when validated on in situ SMHI 
ground station snow cover data, despite much missing data of the Sentinel-2 FSCOG product due 
to cloud and polar nights, and the coarse resolution of the IMS product. The Sentinal-2 FSCOG 
product showed tendencies to underestimate snow cover. The IMS product proved to be better to 
calculate snow dynamic metrics and overestimated the snow cover instead. A spatiotemporal 
fusion algorithm was developed which generated a new snow cover product named V2 based on 
the IMS and Sentinel-2 FSCOG product. The V2 product maintained the high spatial resolution of 
the Sentinel-2 FSCOG product while achieving the daily temporal resolution of the IMS product. 
This newly developed product achieves similar (slightly lower) snow monitoring accuracy as the 
original products, and significantly limited the effect of cloud cover and polar nights of original 
the Sentinel-2 FSCOG product while retaining its high spatial resolution. This enabled better 
characterization of snow cover dynamics compared to the Sentinel-2 product but not the IMS 
product.  

The study showed that spatiotemporal fusion of remotely sensed snow cover data can be used for 
snow cover mapping of mountainous regions in Sweden. By combining snow cover products 
from multiple sources which includes microwave-based sensors in combination with high spatial 
resolution optical snow cover products the snow cover can be monitored in greater detail and 
more frequently than the standalone products. The proposed spatiotemporal algorithm could be 
used when improved spatial and temporal resolution is prioritized over accuracy. 

Keyword: Remote sensing, snow cover, validation, spatiotemporal fusion, IMS, Sentinel-2 



 

 
 

Referat 
Gap-free snow cover mapping in Sweden using satellite observations 
Oscar Törsleff 
 
Snötäcket spelar en viktig roll i den globala energi- och vattenbalansen. Snötäcket har 
högt albedo som reflekterar solljus och hjälper till att hålla nere jordens temperatur. 
Många områden är beroende av snösmältning som en källa till dricksvatten och 
bevattning för jordbruk. Med den globala uppvärmningen förändras snötäckets dynamik 
vilket ökar efterfrågan på exakta snötäckeskartor för att bättre övervaka snötäcket och 
dess förändringar. Speciellt på högre breddgrader som de svenska fjällregionerna, där 
utmanande förhållanden gör snötäckeskartering med fjärranalys särskilt svårt. Denna 
studie syftar i första delen till att validera den nuvarande optiska snötäckeprodukten från 
Sentinel-2 (FSCOG) och mikrovågsbaserade snötäckeprodukten från Interactive 
Multisensor Snow and Ice Mapping System (IMS). Valideringen utförs i de svenska 
fjällregionerna mot valideringsdata från markbaserade snödjupsmätningar. Den andra 
delen syftar till att förbättra snötäckeskarteringen genom att kombinera de två 
snötäckeprodukterna genom spatiotemporal fusion. Denna metod drar nytta av IMS 
höga tidsmässiga upplösning och Sentinel-2 FSCOGs höga rumsliga upplösning. 
 
Båda snötäckeprodukterna uppnår noggrannhet över 90% när de valideras med SMHI:s 
markstationsdata. Detta trots ofullständiga data från Sentinel-2 FSCOG-produkten på 
grund av moln och polarnätter, samt IMS-produkternas grova upplösning. Sentinel-2 
FSCOG-produkten visade tendenser på att underskatta snötäcket. IMS-produkten visade 
sig vara bättre på att beräkna snötäckets dynamik och överskattade i stället snötäcket. 
En rumslig och tidsmässig fusionsalgoritm utvecklades som genererade ett nytt dataset 
kallad V2 baserad på IMS och Sentinel-2 FSCOG-dataseten. V2-datasetet bibehöll den 
höga rumsliga upplösningen från Sentinel-2 FSCOG-produkten samtidigt som den 
uppnådde den dagliga tidsupplösningen från IMS-produkten. Denna nyutvecklade 
produkt uppnår något lägre snöövervakningsnoggrannhet som de ursprungliga 
produkterna. Den nyutvecklade snöprodukten begränsade avsevärt effekten av 
molntäcke och polarnätter i den ursprungliga Sentinel-2 FSCOG-produkten samtidigt 
som dess höga rumsliga upplösning bibehölls. Detta möjliggör bättre kartläggning av 
snötäckets dynamik jämfört med Sentinel-2 produkten men lägre än IMS produkten. 
 
Studien visade att rumslig och tidsmässig fusion av fjärranalyserade snötäcksdata kan 
användas för snötäcke-kartläggning i bergsområden i Sverige. Genom att kombinera 
snötäckeprodukter från flera källor, inklusive mikrovågsbaserade sensorer i kombination 
med optiska snötäckeprodukter med hög rumslig upplösning, kan snötäcket övervakas 
mer detaljerat och oftare än med enskilda produkter. Den föreslagna spatiotemporala 
algoritmen kan användas när förbättrad rumslig och tidsmässig upplösning prioriteras 
framför noggrannhet. 
 
Nyckelord: Fjärranalys, snötäcke, validering, spatiotemporal fusion, IMS, Sentinel-2 
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POPULÄRVETENSKAPLIG SAMMANFATTNING 
 
Snö spelar en viktig roll i jordens klimat och vattencykel. Snös förmåga att reflektera 
solljus hjälper att kyla ner ytan på vår planet och är en viktig del i atmosfärens 
energibalans. Avsmältningen av snötäcket på våren och sommaren förser stora områden 
med vatten och är en viktig källa till rent dricksvatten för många människor. Det är 
därför viktigt att kunna förstå och kvantifiera snötäckets utbredning över hela jorden. 
Att mäta snödjup manuellt på enskilda platser räcker inte till för att förstå hela 
snötäckets energibalans. Med global uppvärmning är det ännu viktigare att kunna 
kartlägga snötäckets utbredning och dess påverkan på globala temperaturökningen. 
 
Traditionella metoder för att mäta snötäckets utbredning utnyttjar fjärranalys där 
satelliter som kan analysera hela jordens används. Att använda optiska bilder från 
satelliter är en enkel metod för att upptäcka och kartlägga snö med hög rumslig 
upplösning. Moln och dåliga ljusförhållanden förhindrar ofta satelliterna att ta 
tillräckligt bra bilder för att kunna särskilja snötäcket. Med satelliter som använder 
mikrovågsstrålning är det möjligt att upptäcka snö även genom molnen. Eftersom dess 
bilder täcker en stor area kan de uppnå en hög tidsmässig upplösning till en bekostnad 
av låg rumslig upplösning. 
 
Sveriges fjällmassiv ligger så pass långt norrut att solens strålar inte räcker till för att 
mäta snötäcket med optiska bilder under vinterns månader. Detta i kombination med de 
molntäcken som ofta täcker området skapar utmanande förhållanden för att mäta 
snötäckets utbredning med hög rumslig och tidsmässig upplösning. Målet med denna 
studie är därför att undersöka möjligheten att kombinera styrkorna hos två metoder för 
att kartera snötäcket. Den europeiska satellitkonstellationen Sentinel-2 använder optiska 
sensorer med hög rumslig upplösning. Interactive Multisensor Snow and Ice Mapping 
System (IMS) från den amerikanska vädermyndigheten uppnår hög tidsmässig 
upplösning och baserar sin snötäckesdata flera källor där bland annat bilder från 
satelliter som använder mikrovågsstrålning. 
 
Studiens första del validerar de två snötäckesprodukterna på referensdata från Svenska 
Meteorologiska och Hydrologiska Institutionen (SMHI). Båda produkterna visade hög 
precision med över 90% träffsäkerhet där Sentinel-2 hade en liten fördel. Sentinel-2 
tenderade att underestimera snötäcket medan IMS överskattade snötäckets utbredning. 
Även för estimeringen utav snötäckets säsongsdynamik Sentinel-2 tenderade att 
överskatta och IMS underskatta det uppmätta snötäcket. IMS fick även värden närmare 
det sanna värdet från SMHI data jämfört med Sentinel-2. 
 
För att förbättra karteringen av snötäcket togs en algoritm fram. Algoritmen kombinerar 
den rumsliga upplösningen från Sentinel-2 med den tidsmässiga upplösningen från IMS. 
En ny snötäckesprodukt för det undersökta området togs fram och fick namnet V2.  Den 
nya produkten bibehåller den höga rumsliga upplösningen från Sentinel-2 med dagliga 
uppdateringar likt IMS. Metoden minskar påverkan av moln och de otillräckliga 
ljusförhållanden som ofta råder i de svenska fjällen. Detta ledde till bättre estimering av 
snötäckets säsongsdynamik med värden bättre än de för Sentinel-2, dock inte lika nära 
de värden som IMS uppnår. Den totala precisionen var något lägre än de två 
ursprungliga produkterna. 
 



 

 
 

Studien visade att det är möjligt att kombinera två olika snöprodukter i områden med 
svåra förhållanden så som svenska fjällen. Kombinationen av hög rumslig och 
tidsmässig upplösningen från olika snötäckesprodukter ger upphov till en ny produkt 
där de bästa aspekterna från varje enskild produkt utnyttjas. Metoden är en förbättring 
mot tidigare de ursprungliga produkterna på vissa parametrar och belyser problemen 
med moln och otillräckliga ljusförhållanden som normalt är problematiska. Bättre 
snötäckeskartor kan förbättra hur vi hanterar vattenresurser på ett mer effektivt sätt. Det 
kan hjälpa samhället att minska risken för översvämningar och vattenbrist. 
Klimatforskning gynnas av noggrannare snötäckesdata då bättre modeller för 
energibalansen i atmosfären kan tas fram vilket mer riktiga förutsägelser om global 
uppvärmning. Genom att integrera den ny algoritmen i befintliga hydrologiska och 
klimatmodeller kan vi utnyttja naturresurser på ett mer hållbart sätt.



 

 
 

 

Table of contents 

1 Introduction ............................................................................................................ 3 
1.1 Purpose ............................................................................................................. 4 
1.2 Snow Characterization ...................................................................................... 5 

1.2.1 Snow Depth/Snow Water Equivalent ........................................................... 5 
1.2.2 Snow Cover Extent ....................................................................................... 5 
1.2.3 Fractional Snow Cover ................................................................................. 5 
1.2.4 Snow cover duration ..................................................................................... 6 
1.2.5 Snow cover onset and end date ..................................................................... 6 

1.3 Remote sensing based snow cover mapping .................................................... 6 
1.3.1 Normalized Difference Snow Index ............................................................. 8 

1.4 Spatiotemporal Fusion ...................................................................................... 8 

2 Study Area .............................................................................................................. 11 

3 Data ........................................................................................................................ 13 
3.1 Sentinel-2 FSCOG ............................................................................................ 13 
3.2 IMS 1km ......................................................................................................... 15 

3.3 SMHI .............................................................................................................. 18 

4 Method ................................................................................................................... 20 
4.1 Validation Sentinel-2 and IMS snow cover products ..................................... 20 

4.1.1 Station data extraction for validation .......................................................... 20 
4.1.2 Statistical metrics for station based validation ........................................... 20 

4.2 Cloud impact analysis of Sentinel-2 snow cover product .............................. 22 

4.3 Snow cover dynamics ..................................................................................... 23 
4.3.1 Snow cover onset and end date ................................................................... 23 
4.3.2 Snow cover duration ................................................................................... 24 

4.4 Sentinel-2 and IMS Spatiotemporal fusion algorithm .................................... 24 

4.5 Validation of new V2 dataset and comparison to Sentinel-2 FSCOG .............. 27 

5 Results .................................................................................................................... 28 
5.1 Point based validation of Sentinel-2 and IMS snow cover products .............. 28 
5.2 Cloud impact analysis of Sentinel-2 FSCog snow cover product .................... 30 

5.3 Snow cover dynamics from sentinel-2 and IMS snow cover products .......... 31 
5.4 Station based Validation of V2 dataset from spatiotemporal fusion algorithm
 33 
5.5 Data availability of V2 snow cover product ................................................... 35 

5.6 Part 2: Snow cover dynamics ......................................................................... 36 



 

 
 

5.7 Part 2: Comparison of V2 snow cover product to original Sentinel-2 FSCog 
and IMS snow cover products .................................................................................... 38 

6 Discussions ............................................................................................................. 40 
6.1 Part 1: Point based validation of Sentinel-2 and IMs snow cover products ... 40 
6.2 Part 1: Cloud impact analysis of Sentinel-2 FSCog snow cover product ........ 41 

6.3 Part 1: Snow cover dynamics of Sentinel-2 FSCog and IMS snow cover 
products ...................................................................................................................... 42 

6.4 Part 2: Point based validation of V2 snow cover product .............................. 43 
6.5 Part 2: Data availability of V2 snow cover product ....................................... 43 

6.6 Part 2: Snow cover dynamics of V2 snow cover product ............................... 44 
6.7 Part 2: Comparison of V2 snow cover product to original Sentinel-2 FSCog 
and IMS snow cover products .................................................................................... 44 

7 Conclusions ............................................................................................................ 46 

8 References .............................................................................................................. 47 

9 Appendix ................................................................................................................ 51 
9.1 Individual station snow cover product confusion matrix ............................... 51 

9.1.1 FSCOG ......................................................................................................... 51 
9.1.2 IMS ............................................................................................................. 54 
9.1.3 V2 ............................................................................................................... 56 

 

 



 

 
3  

1 INTRODUCTION 
 
Snow cover plays a vital role in the global energy and water cycle. Snow covered 
ground has a high albedo which reflects sunlight and helps keep the earth cool. With the 
reflective properties of snow it provides a negative radiative forcing leading to a cooling 
effect from the snow covered areas of the earth (Flanner et al. 2011). With global 
warming raising the average temperatures in the atmosphere, snow cover dynamics are 
changing across the snow-covered areas of the earth. In the Northern Hemisphere the 
snow cover duration has seen a reduction of 5-6 days per decade based on data from 
1967-2018 (Bormann et al. 2018). The loss of snow covered areas due to global 
warming has led to a decrease of the cryospheric cooling further accelerating the 
heating of earth’s atmosphere (Flanner et al. 2011). Knowing the extent and location of 
the snow cover on earth’s surface is crucial for climate research and understanding 
temperature changes in the earth’s atmosphere. 
 
Snow is an important source of drinking water in various parts of the world. Over half 
of the world’s population rely on water from rivers created by snowmelt (Barnett et al. 
2005). In places with high precipitation and cold temperatures the snowpack acts as a 
water storage and provides usable water throughout the year. Continuous melting of the 
snow feeds rivers and streams bringing water to civilizations downstream. Regions 
lacking in water storage capacity along the flow path will suffer the most from these 
changes as they rely on a continuous supply of water from melting snow (Barnett et al. 
2005). The water cycle related to snow cover is therefore of great importance to 
people’s well-being all over the world. Accurate snow maps help forecast the snowmelt 
and subsequently the flow rates of rivers bringing water to settlements. 
  
Snow cover sees high spatial and temporal variations, especially in mountainous areas 
due to the complex topography. Transportation of snow by wind causes accumulation 
zones on leeward slopes (Mott et al. 2018) and different slope aspects effect the ablation 
properties of snow cover in mountains (Largeron et al. 2020a). The scale of spatial 
variation can be the small scale of individual slopes where local properties such as 
topographic shading resulting in wind accumulation cause the variation in snow cover. 
Larger scales affecting separate watersheds are affected by snow precipitation caused by 
mountain ranges pushing humid airmasses upward into colder air leading to 
precipitation, also called orographic precipitation. Temperature gradients across 
different elevations cause variations in snow cover in mountains with very heterogenous 
topography (Mott et al. 2018). 
 
Accurate snow cover data are essential for hydrological modeling and water resource 
management (Dong 2018). As snowmelt is a primary water source for many regions 
(Barnett et al. 2005), precise information on snow cover extent and dynamics is needed 
to predict water availability and manage reservoirs effectively. Inaccurate snow cover 
data can lead to poor water management decisions (Andreadis & Lettenmaier 2006), 
potentially causing water shortages or flooding (Bormann et al. 2018). 
 
Snow cover maps can be generated through ground station measurements, satellite 
remote sensed observations or airborne observations. Measuring the snow depth on the 
ground is the easiest way to map the snow cover. This can be done with a measuring 
stick or automatically with a snow height sensor (Dong 2018). Simple observations of 
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the ground either by a human at the location or via webcams can give information if 
snow cover is present or not (Largeron et al. 2020b). Measurements are taken at regular 
intervals at the same location to create continuous datasets of the state of the snow 
cover. The spatial variability of the measurements can be very coarse depending on the 
infrastructure put in place to take measurements. It is possible to use interpolation 
techniques to extend the snow data to areas in-between stations, this is however at a 
reduced accuracy. This is the main drawback for in situ snow observations especially in 
mountainous regions with high variability in the snowpack. The reliability and high 
accuracy of in situ measurements make them good candidates to use as ground truth 
data for validation of other snow cover products (Dong 2018). 
 
Satellite remotely sensed snow cover observations utilize the properties of snow in the 
electromagnetic spectrum to differentiate between snow cover from other surfaces. 
Remote sensed observations can benefit from a the possibility to have coverage of the 
whole earth when certain sensors are used compared to ground based observations that 
are limited to a small area (Largeron et al. 2020b).  A widely used method for detecting 
snow in the optical part of the electromagnetic spectrum is through the Normalized 
Difference Snow Index (NDSI) (Hall et al. 2002), this method is however severely 
limited by cloud cover. Passive microwave is used for its ability to penetrate cloud 
cover and achieve a higher temporal resolution at the cost of low spatial resolution. 
Active microwave radar is used at high spatial resolution and can penetrate clouds but is 
limited to detecting wet snow cover making them only usable during periods when 
snow is melting. Airborne methods from for example airplanes or drones can use the 
same sensors as satellites but achieve much higher spatial resolution because of the 
shorter distance to the observed medium. They are instead limited by small observable 
regions due to the limited coverage (Largeron et al. 2020b). 
 
The significant spatial and temporal variations of snow cover in mountainous regions 
present challenges for accurate monitoring and modeling. Current snow cover products 
often struggle to capture these variations due to limitations in spatial and temporal 
resolution, especially in high latitudes where polar darkness occurs (Dietz et al. 2012b). 
High spatial resolution products provide detailed information but are limited by 
infrequent updates, whereas high temporal resolution products offer frequent updates 
but lack the detail needed for fine-scale analysis (Dietz et al. 2012a). 
 
1.1 PURPOSE 
 
This project aims to address the gaps in current snow cover mapping methodologies, 
particularly focusing on the challenges posed by cloud cover and low light conditions in 
high-latitude areas. The goal is to enhance the accuracy and reliability of snow cover 
maps, which are crucial for various environmental, agricultural, and water resource 
management applications. 
 
Purpose of the project: 
 

• Investigate the accuracy of snow cover products in Swedish mountainous 
regions. 

• Investigate the potential of combining microwave and optical remote sensing 
data to overcome the limitations of traditional snow cover mapping methods 
and improve the snow cover mapping at high latitudes.  
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From the stated purpose of the project the following research questions are presented: 
 

• What is the comparative accuracy of microwave-based remote sensing versus 
optical-based snow cover products at high latitudes?  

• How can combining optical and microwave satellite imaging techniques improve 
the accuracy of snow cover mapping at high-latitude areas? 

1.2 SNOW CHARACTERIZATION 
Measuring the dynamics of snow cover can be done using different metrics to quantify 
and describe different aspects of the snow cover on the ground. They provide 
information about the snow cover and are suitable for studying trends in the Earth’s 
snow cover. Different aspects of the snow cover properties such as extent, depth and 
water content are described by these metrics.  
 
1.2.1 Snow Depth/Snow Water Equivalent  
Snow water equivalent (SWE) is a measurement of how much water is contained within 
the snowpack in a specific area. It gives the depth of water in the defined area that the 
snowpack would melt into in liquid form. It is given by a product of the snow depth and 
the snow density in the snowpack (CGLS 2024b). Measuring SWE from space can be 
done with passive microwave sensors but coarse spatial resolution makes it unsuitable 
the heterogeneous snow packs found in complex mountainous terrain (Bormann et al. 
2018). Efforts to combine remote sensing data with digital elevation models (DEM), 
land cover information, in situ measurements and meteorological data using a machine 
learning approach have brought forward an improved estimation of the snowpack 
compared to using only microwave data (Zhang et al. 2021). SWE provides valuable 
information for applications interested in the water provided by a melting snowpack. 
These can be flood forecasting, water level control for hydropower and irrigation in 
agriculture.   
 
1.2.2 Snow Cover Extent 
Snow cover extent (SCE) measures the spatial area covered by snow. It’s represented by 
a binary map of either snow covered ground or non-snow covered ground (Largeron et 
al. 2020a). The highly dynamic aspects of SCE due to its sensitivity to temperature 
changes and precipitation makes it an important parameter for Earth’s global surface 
energy budget. It serves as an input to weather forecast modeling and plays an important 
role in hydrological runoff modelling and flood forecasting (CGLS 2024a). 
 
1.2.3 Fractional Snow Cover 
With SCE being a binary estimate of snow cover in each pixel there is no information 
given about the variability of snow cover within the pixel. Fractional snow cover (FSC) 
is given as a fraction of the area covered by snow in a pixel. Estimating the FSC in the 
pixel gives more information about the amount of snow present in the pixel. This is 
valuable for hydrological modeling as it gives greater detail of information about the 
snow cover leading to more accurate model simulations (Salomonson & Appel 2004). 
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1.2.4 Snow cover duration 
Snow cover duration (SCD) refers to the duration that an area is covered by snow over a 
period. It’s an important metric for regions experiencing seasonal snow cover. SCD 
varies significantly depending on geographical location and are strongly related to 
latitude and elevation (Dietz et al. 2012b). It is also driven by large weather patterns 
with higher temperatures and reduced snowfall during winter in recent years leading to 
decreased SCD. Precipitation in the form of rain instead of snow as a result of increased 
temperatures is also a factor for decreasing snow cover in the winter (Klein et al. 2016). 
 
1.2.5 Snow cover onset and end date 
Snow cover onset date (SCOD) and snow cover end date (SCED) describes the start of 
the snow cover season and the end of the snow cover season for a location. In the 
northern hemisphere he first day of the snow season occurs in the beginning of the fall 
and the last day occurs in late spring. SCOD and SCED see great spatial variation and 
the driving factors are latitude and elevation which correlate well with SCOD and 
SCED in Europe (Dietz et al. 2012b). As climate change increases global temperatures 
in the atmosphere, later SCOD and earlier SCED are expected to increase even further 
during the this century (Jylhä et al. 2008). 
 
This study will focus on SCE and FSC for the snow mapping and SCD, SCOD and 
SCED for the snow cover dynamics for the remote sensed products. The validation data 
is given in snow depth but can be converted to SCE by using a threshold for the snow 
depth that should be considered as snow covered ground. These are the metrics used to 
measure the snow cover and its properties.  
 
1.3 REMOTE SENSING BASED SNOW COVER MAPPING 
This section aims to further explain remote sensing to understand the technique behind 
development of the snow cover products used in this study. Both the snow cover 
products are explained in greater detail in a later section. One of the snow cover 
products is purely based on remote sensed optical data. The other product uses a 
combination of observations for mapping snow cover with microwave based sensors 
during periods of cloud cover and low light conditions. 
 
Remote sensing is a technology to gather information about earth from a distance. It 
enables data gathering of the Earth’s state and helps make predictions about the future. 
It gives a global overview and enormous amounts of data for analysis of the planet 
(Earth Science Data Systems 2024). The basic principle of remote sensing in earth 
system observations is to measure the emitted radiation from the Earth’s surface. All 
objects emit radiation at different wavelengths, and this enables sensors aboard satellites 
to measure the different wavelengths emitted by various surfaces. By interpreting the 
measured radiation and applying physical principles, it is possible to identify and 
characterize various features of the observed surfaces (Read & Torrado 2009).  
 
A vast variety of satellites are used for remote sensing, studying different parts of the 
electromagnetic spectrum. Different orbit properties give satellites unique possibilities 
to facilitate various needs for data acquisition. High geostationary orbits can constantly 
monitor specific areas, while lower orbits can monitor the whole Earth at cost of less 
frequent data acquisition for a specific area (Earth Science Data Systems 2024). 
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Remote sensing provides a significant advantage in some cases over traditional snow 
data collection methods such as physical in situ measurements. These traditional 
methods are often limited by accessibility and the geographical scale of the examined 
area. Remote sensing allows for continuous and extensive coverage of the whole earth 
(Dong 2018). This is important for highly dynamic environmental variables like snow 
cover which sees rapid changes and large  spatial heterogeneity (Mott et al. 2018). 
 
Remote sensing involves the use of sensors that detect various spectral bands, including 
visible, infrared, and microwave wavelengths (Largeron et al. 2020b). Each spectral 
band provides different information about the Earth's surface depending on the 
interaction between the radiation and the surface. Different surfaces such as vegetation, 
water and snow cover have different spectral signatures which allows them to be 
detected using image processing and classification methods. For more detailed spectral 
analysis, multispectral sensors can be used. These have more spectral bands which 
allow more details in the electromagnetic spectrum to be studied (Read & Torrado 
2009). 
 
The revisit time of a polar orbiting satellite determines the time it takes for at satellite to 
visit the same location twice, this is known as temporal resolution. High temporal 
resolution is crucial for monitoring changes in dynamic environmental variables like 
snow cover, vegetation and natural disaster monitoring. Satellites with frequent revisit 
times and thus high temporal resolution are well-suited for monitoring these changes 
(Belgiu & Stein 2019). A satellite can be stationary in the sky offering a fixed view of 
the earth, this is referred to as geostationary orbits. By orbiting the earth in exactly one 
day over the equator the satellite stays in the same place in the sky relative to an 
observer on earth. This allows for continuous monitoring a certain part of earths surface. 
This is common for meteorological and communicating satellites. These satellites can 
achieve temporal resolutions of minutes at a cost of lower resolution at a scale of 
kilometers (Liang & Wang 2020). The viewing angle of geostationary satellites makes 
observations at high latitudes unusable since the images of the surface becomes to 
distorted (Penn State n.d). Spatial resolution refers to the smallest feature that can be 
detected by a satellite sensor. Essentially it refers to the pixel size in an image obtained 
from remote sensing, relative to the area it covers on Earth. High spatial resolution 
sensors can capture fine details and changes over small areas. This is useful for 
applications where large spatial variability is present such as forestry and snow 
modelling. However, higher spatial resolution comes at the expense of lower temporal 
resolution since higher resolution satellites covers a smaller portion of the earth’s 
surface requiring more revolutions to cover the whole earth (Earth Science Data 
Systems 2024). 
 
The electromagnetic spectrum has several regions used for different remote sensing 
applications. Sensors onboard satellites are constructed to operate in specific parts of the 
spectrum. These regions are typically visible, infrared and microwave (Read & Torrado 
2009). The Sentinel-2 satellites used in this study operate in the visible to short wave 
infrared part of the spectrum. Another satellite of the same Sentinel mission, the 
Sentinel-3 satellite, carry other types of sensors that for example use microwaves 
instead. A satellite can also, like the Sentinel-3, have active sensors which emit and 
receive radiation. An example of this is the synthetic aperture radar (SAR) sensor 
aboard the Sentinel-3 satellite (European Space Agency 2024). The requirement of an 
application dictates which satellites and sensors that can be used in remote sensing 
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applications. Therefore it is important to understand the radiometric properties of a 
material that is to be studied so the right satellite and sensors can be chosen (Read & 
Torrado 2009). 
 
1.3.1 Normalized Difference Snow Index 
To map snow from space using optical images it is essential to distinguish pixels from 
many other surface categories. Differentiating between snow and cloud is the main 
concern since they share a similar spectral reflectance in the visible part of the spectrum  
(Dozier 1989). Analyzing the texture of cloud and snow pixels can be used to 
distinguish them from each other. The computational complexity of this operation 
becomes a limit when handling large amounts of data, which is needed to map snow on 
a global scale. Therefore, this is not feasible (Dozier 1989). 
 
Using multispectral sensors enables differences in other than the visible spectrum to be 
used. The same reflectance is observed in the visible spectrum for both clouds whilst 
snow has a lower reflectance in the near-infrared (NIR) spectrum at 1.55 to 1.75 µm 
(Hall & Riggs 2010). This is due to the larger grain size of snow which is mostly 
composed of ice particles.  
 
A normalized difference for snow detection was first developed by Dozier (1989) for 
the Landsat Thematic Mapper to automate mapping of snow. Utilizing the previously 
described spectral properties of snow and clouds a normalized difference of band 2 
(0.52 − 0.60𝜇𝑚) and band 5 (1.55 − 1.75𝜇𝑚) from the Landsat Thematic mapper 
could be used to automate the classification of snow in remote sensed images. The term 
normalized-difference snow index (NDSI) was devised by Riggs et al. (Hall et al. 1995) 
during development of a new snow detection algorithm for the data from the new 
moderate resolution imaging spectroradiometer (MODIS). The algorithm used bands 
with similar wavelengths to what was used by Dozier (1989). These were MODIS band 
4 (0.545 − 0.565𝜇𝑚) and band 6 (1.628 − 1.652𝜇𝑚). The MODIS snow mapping 
algorithm also took into account the different reflectance due to dense canopy’s in 
forested areas as detected by the Normalized Difference Vegetation Index (NDVI) (Hall 
& Riggs 2010). The NDSI algorithm is used for other snow cover products and are 
adapted to the spectral bands of the satellites used. For NDSI with the Senitnel-2 
satellite the green (492.4𝜇𝑚) and short wave infrared (1373.5𝜇𝑚) bands are used 
(HR-S&I 2023). 
 
Utilizing the NDSI SCE can be estimated using optical images and a threshold applied 
to the NDSI value. This threshold is typically 0.4 with values above being classified as 
snow cover(Dozier 1989). FSC is derived in remote sensed optical images as a function 
of NDSI. NDSI has proven to have a linear relationship with snow cover for the 
MODIS snow product (Salomonson & Appel 2004). It is utilized as part of the process 
for determining FSC on the ground for the Sentinel-2 snow cover product by 
Copernicus land monitoring service (HR-S&I 2023). 
 
1.4 SPATIOTEMPORAL FUSION 
Spatiotemporal fusion is a method that aims to integrate multitemporal and 
multispectral satellite images to produce a high-resolution dataset by combining the best 
aspects of multiple data sources. The technique can be used to fill in data gaps caused 
by cloud cover and insufficient illumination as well as improve the temporal resolution 
in remote sensed data with low temporal resolution. Figure 1 shows how the 
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combination of two datasets with one of coarse spatial resolution and one with high 
spatial resolution generate a dataset with both high spatial and temporal resolution. The 
ultimate goal is to generate a higher more refined product which provide more 
information to various use cases (Pohl & Van Genderen 1998). 
 

 
Figure 1: A coarse spatial resolution dataset with high temporal resolution is combined using 
spatiotemporal fusion with a high spatial but low temporal resolution dataset to create a new dataset with 
both high spatial and temporal resolution. 

An example of sensors which can be combined in spatiotemporal fusion is the very high 
temporal resolution optical MODIS sensor. The coarse spatial resolution of a couple of 
hundred meters (Hall et al. 2002) is not sufficient for some applications making it 
unsuitable where high spatial variability occurs. In contrast higher spatial resolution 
sensors such as Sentinel-2, providing a spatial resolution of 20m (European Space 
Agency 2024), can achieve high enough spatial resolution for mapping snow cover. The 
temporal resolution of 5 days (European Space Agency 2024) is however not enough for 
all scenarios. A resulting synthesized combined dataset can achieve the high temporal 
resolution of the MODIS sensor and the high spatial resolution of the Sentinel-2 sensor. 
This approach facilitates better monitoring of highly dynamic processes at a smaller 
scales (Zhu et al. 2018). 
 
According to Belgiu and Stein (2019) the challenge of cloud cover causing unusable 
image data from optical satellites is the biggest use case for spatiotemporal fusion. 
Combating this issue with spatiotemporal fusion enables the creation of uninterrupted 
time-series allowing more accurate and consistent monitoring of the environment. 
Insufficient illumination in high latitudes as a result of polar darkness are described by  
Dietz et al. (2012b) as a problem for snow cover mapping using the optical MODIS 
sensor. When not enough light from the sun hits the surface, it is not possible to map the 
snow cover. At the polar circle at 66°N as much as 71 days are not available in the 
MODIS snow cover data due to polar darkness. Spatiotemporal fusion can be used to 
overcome these limitations by using other sensors capable of mapping snow even with 
the absence of sunlight.  
 
One challenge presented with spatiotemporal fusion is the low computational efficiency 
which limits the feasibility of implementing these methods effectively in real-world 
applications. Many current methods require intensive computations for each pixel to 
fuse the two input datasets to a usable product (Zhu et al. 2018). Zhu et al. (2018) gives 
an example of using the techniques on one Landsat scene, about 37 million pixels. The 
computation takes several hours or even days for the one Landsat scene. This limits the 
use of the methods to small areas or infrequent uses. The use of parallelization, cloud 
computing and utilization of specified computing hardware suitable for pixelwise 
operations such as GPUs can mitigate these issues in the future (Zhu et al. 2018). 
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Esmaeelzadeh et al. (2024) has explored the opportunities presented with fusing 
Sentinel-2 FSC data with Sentinel-1 wet snow cover maps. The high-resolution 
Sentinel-2 optical images are limited by cloud cover and polar night. The Sentinel-1 wet 
snow cover product uses SAR and are thus not hindered by cloud cover. The downside 
of the Sentinel-1 snow cover product is that it only detects wet snow. Esmaeelzadeh et 
al. (2024) shows promising results in fusing the two snow cover products to create a 
SCA map with Sentinel-1 wet snow mask being used to differentiate areas with wet 
snow. Being able to more accurately map wet snow in SCA maps can contribute to 
improve hydrological modelling of runoff (Esmaeelzadeh et al. 2024). 
 
Revuelto et al. (2021) used Sentinel-2 and MODIS snow cover observations to increase 
the resolution from 500m to the 20m of Sentinel-2. The method uses the high-resolution 
Sentinel-2 snow cover product and applies probabilistic spatial downscaling for the 
lower resolution MODIS snow cover product. A partially snow-covered pixel from the 
MODIS snow cover product can be overlaid on the probability mask and increases the 
resolution from 500m to 20m. They study showed improved performance of snow cover 
mapping over the Iberian Peninsula (Revuelto et al. 2021). 
 
Rittger et al. (2021) have examined the possibility to create daily FSC maps with a 
resolution of 30m by using a random forest algorithm. The method combines data from 
MODIS and Landsat to overcome the limits of both their spatial and temporal 
resolution. The 500m spatial resolution of the MODIS data is insufficient for some 
snow cover applications. Landsat has a similar spatial resolution to that of Sentinal-2 at 
30m. By using spectral mixing and a random forest algorithm they were able to create a 
daily snow cover product of 30m spatial resolution. 
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2 STUDY AREA 
 
The study area that was chosen for the implementation and validation of the snow cover 
products includes the mountainous parts of Västerbotten county and the northern parts 
of Jämtlands county in Sweden. See Figure 2 for the exact location. This geographical 
selection was made strategically to include enough meteorological measuring stations 
from the Swedish meteorological and hydrological institute (SMHI) as described in 
section 3.3, which are crucial for the validation of the snow cover products. In 
conjunction with enough stations and variability in land cover type the available 
Sentinel-2 FSC tile extent was used to limit the study area within Sweden. 5 tiles that 
cover the selected SMHI stations are used giving the limit of the study area to the north, 
east and south. The border between Sweden and Norway was used to limit the extent 
towards the west.  
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Figure 2: Location of study area outlined with red and location of SMHI meteorological measuring 
stations within the study area. The western limit of the study area follows the border between Sweden and 
Norway. 

The extent of the area includes a variety of different land cover types to provide an 
accurate representation of the different environments that exist in the Swedish 
mountainous areas. The stations located in the western parts towards the Norwegian 
border are more mountainous whilst the eastern parts are at lower elevation with less 
topographical variation. The vegetation in the selected area also varies from no to low 
vegetation at higher elevations in the west to vegetated land and forests 
(Naturvårdsverket 2023). The variation in land cover type is critical for the selection of 
the area to make the validation of snow cover products more generalized and applicable 
to a larger extent of the Swedish mountainous regions. 
 
High enough latitudes experience insufficient light from the sun to facilitate optical 
observations of the Earth’s surface. This phenomenon is called polar darkness and 
affects parts of the earth at latitudes higher than 62°N (Dietz et al. 2012b). The chosen 
study area lies above this latitude to include the effects of polar darkness on the 
examined snow cover products.  
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3 DATA 
 
The following section describes the data used in the study. The two snow cover datasets, 
Sentinel-2 FSCOG and IMS, are presented and explained. The data from the SMHI 
stations that was used as ground truth data for the validation of the two datasets is 
presented. The time span that was examined was determined by the availability of 
Sentinel-2 data since the start of the Sentinel-2 mission is more recent than IMS. The 
hydrological years of 2018-2023 was used in the study. This means that the 2017-2018 
snow season was the first and 2022-2023 snow season was the last used in the study. 
 
3.1 SENTINEL-2 FSCOG 
The FSC product from the Copernicus Land Monitoring Service (2018) provides a high-
resolution snow cover monitoring for the European Union member nations. FSC gives 
the fraction of a pixel that is covered by snow giving more information than a binary 
snow not-snow SCE product. 
 
Sentinel-2 consists of a constellation of two satellites, Sentinel-2A and Sentinel-2B, 
which carry a multi-spectral instrument enabling high resolution multi-spectral images 
in the visible, near infrared and short-wave infrared region of the spectrum. The spatial 
resolution varies from 20m to 60m depending on the Senintel-2 band. Each satellite has 
a revisit time of 10 days giving the constellation of the two opposing satellites a revisit 
time of 5 days. At high latitudes even shorter revisit times can be observed since the 
swath of separate passes overlap (European Space Agency 2024). There are however 
temporal gaps in the FSC product leading to data gaps with varying temporal resolution 
(Copernicus Land Monitoring Service 2018) 
 
Cloud detection, atmospheric correction and topographic normalization is first carried 
out on the Sentinel-2 L1C product using the MAJA algorithm developed by CNES as 
shown in Figure 3. This resulting product is then used as an input to calculate the NDSI. 
A second criterion is used with the red band to avoid false snow detection on water 
surfaces. This modified NDSI algorithms is named LIS by HR-S&I (Gascoin et al. 
2019). A first pass through the LIS module is carried out with low thresholds for SCA to 
estimate regional snowline elevation from a DEM. The second pass uses higher 
thresholds to refine the snow detection above the established snowline elevation (HR-
S&I 2023). 
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Figure 3: Workflow of the Sentinel-2 FSC algorithm and its intrinsic components. Inputs are presented in 
purple, intermediate products in light green and outputs in green. The blocks enclosed by the red line 
indicate parts of the Let it Snow software (LIS) module. 

The relationship between NDSI and FSC is established by Salomonson & Appel (2004) 
for MODIS data. The equation for FSCTOC is presented in equation ( 1 ). The same 
function is used for the Sentinel-2 product (HR-S&I 2023) to obtain the FSC. 
 

𝐹𝑆𝐶!"# = 1.45	 × 	𝑁𝐷𝑆𝐼 − 0.01 ( 1 ) 

The product is given for FSC on top of canopy (FSCTOC) and FSC on ground (FSCOG). 
A viewable gap fraction (VFG) is calculated from the inverse of the tree cover density 
and used in equation ( 2 ) to adjust the FSCTOC for the tree cover density at the location. 
It is recommended to use FSCOG for snow mapping and it is considered as the final 
output (HR-S&I 2023). For applications with SCE the FSCOG can be used as a threshold 
to create a binary map when FSCOG > 0 (Copernicus Land Monitoring Service 2018). 
 

𝐹𝑆𝐶"$ = min	(𝐹𝑆𝐶!"# 	/		𝑉𝐺𝐹, 1) ( 2 ) 

 
The FSCOG product is provided in tiles of 110km by 110 km for the whole of Europe. 
With the spatial resolution of the Sentinel-2 satellite, the FS FSCOG C product is given 
at a resolution of 20m by 20m (Copernicus Land Monitoring Service 2018). This high 
resolution allows for detection of snow with high spatial variability. A higher detailed 
image of the snow cover allows for better accuracy in applications in hydrology, climate 
studies and water resource management.  
 
Besides the snow cover data, the FSCOG product also contains a quality information 
layer which serves to give information about the reliability of the product for each pixel. 
These are based on several indicators that together creates a confidence index. Sun 
angle, cloud presence and tree cover density are factors that contribute to a lower 
confidence index meaning that the pixel value is less reliable (HR-S&I 2023).  
 
For this study a total of 5 tiles was sufficient to cover the study area. The product is 
distributed in EPSG:32633 coordinate reference system (CRS). The file naming 
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convention of the FSCOG product includes a TileID to identify the tiles of each file. A 
five-character combination of letters and numbers proceeded by a capital T. The tiles 
used in the study were: T33WWM, T33WWN, T33WVM, T33WVP and T33WVN. 
 
The meaning of the values in the Sentinel-2 FSCOG snow cover product are presented in 
Table 1. FSCOG represent the FSC on ground and are obtained using equation ( 2 ). 
Cloud pixels are generated using the MAJA algorithm. Due to overlapping Sentinel-2 
acquisition paths some tiles only have partial coverage. As a result, tiles may contain 
regions with no-data pixels. 
 

Table 1: Description of Sentinel-2 FSCOG snow product values physical meaning. 

Value Description 
0-100 
205 
255 

FSCOG (%) 
Cloud of cloud shadow 
No-data 

 

 
Figure 4: Example of Sentinel-2 FSCOG acquisition from 1 June 2020. In grayscale is the values 0-100 
showing the FSCOG with black indicating 0 and now snow. White shows the value 205 indicating cloud 
cover. This image does not contain no-data pixels with the value 255. 

3.2 IMS 1KM 
The second snow cover product used in this study is the IMS Daily Norther Hemisphere 
Snow and Ice Analysis 1km resolution Version 1 (U.S. National Ice Center. 2008). The 
product is produced by analysts using the Interactive Multisensor Snow and Ice 
Mapping System (IMS) developed by US National Ice Center (NIC) in collaboration 
with National Snow and Ice Data Center (NSIDC). It’s a software package that 
combines multiple sources from different sensors allowing analysts to interpret the data 
and produce daily maps of snow and ice cover on the northern hemisphere (Helfrich et 
al. 2018). 
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The system has been developed since 1997 and has seen significant improvements over 
the years. A predecessor to the IMS product part of the National Oceanic and 
Atmospheric Administration (NOAA) produced maps a spatial and temporal resolution 
of 190 km and 7 days by interpreting environmental satellite images. Since the launch 
of the IMS system in 1997 the snow and ice cover maps have been produced daily at a 
spatial resolution of 24km. With improvements in computational efficiency and higher 
resolution satellite imagery a 4km product was introduced in 2004 (U.S. National Ice 
Center 2008). The 1km product used in this study was released in 2014 and is currently 
the highest spatial resolution available. This higher resolution product started 
production after NIC took over production of the IMS software suite (Helfrich et al. 
2018).  
 
Input to the model consists of images from several different satellites with sensors such 
as visible band, passive and active microwave. Polar orbital and geostationary satellites 
are both used. The analysts prefer visible band images but substitute it for passive 
microwave when visible images aren’t available due to clouds or insufficient light 
conditions. Other in situ data from several countries are used where they are available. 
The snow or ice map from the previous day is used as an basis for the current days  map 
(U.S. National Ice Center. 2008).  
 
A land water classification mask is one of the mandatory inputs for the IMS system. It 
delineates waterbodies and oceans from landmasses. This simplifies distinguishing ice 
from snow since snow can be classified on top of ice. If an area is classified as snow 
within region of water determined by the land water mask it will be classified as ice. 
This acts as a safeguard to only classify water as ice (Helfrich et al. 2018). Lastly a 
digital elevation model (DEM) is used to better model snow cover in mountainous 
regions. Topographical changes can then be limits for snow cover allowing the snow to 
follow the topography. IMS uses the USGS GTPO30 DEM averaged to 1km grid cells 
(Helfrich et al. 2018) 
 
The production of snow and ice cover images by the IMS consists of four steps. A first 
step in the pre-processing system is to download all available data for that day through a 
File Transfer Protocol (FTP). All data is downloaded at the highest resolution of max 
1km used for the IMS product. Some data such as microwave have lower resolutions in 
the region of 20km (Helfrich et al. 2018). The system reprojects each product into the 
IMS projection to allow analysts to interpret and compare different products. The 
second step takes each product and displays it in the IMS GUI (graphical user interface) 
for analysts to interpret. As the third step an analyst tags the locations as snow or ice 
cover for the whole coverage area. The last step takes the information from the IMS 
GUI and produces the final product in the various file formats and resolutions that 
NSIDC distribute (Helfrich et al. 2018). 
 
The process of classifying snow and ice involves the analysts interpreting the state of 
each 1km grid cell. More than 40% of the cell needs to consist of snow or ice to be 
classified as such (Helfrich et al. 2018). This is not a threshold applied to any of the 
input data per se but rather the combined evaluation of all the different data sources 
available for the area (U.S. National Ice Center. 2008). In the 1km product some cells 
can be combined into 4km cells if half or more of the 1km cells in a 4x4 area has the 
same class (Helfrich et al. 2018). 
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The IMS 1km product is ultimately produced by analysts applying their expert 
knowledge to determine the snow or ice state of the surface. There are few algorithms 
running for this classification other than reprojecting and converting the data correct 
formats and displaying it for the analysts (Helfrich et al. 2018).  
 
The IMS product is distributed in different resolutions and formats suitable for various 
applications. From 24km to the one used in this study of 1km. Among the different 
formats GeoTIFF was chosen for this project because of its compatibility with common 
GIS software. The product is distributed in a polar stereographic projection. The area 
covered by the IMS snow cover product contains the whole northern hemisphere. The 
product was acquired through the NSIDC HTTPS file system(U.S. National Ice Center 
2004). The values in the IMS GeoTIFF files represent different classes according to 
Table 2. 
 
An example acquisition of the IMS snow cover product is shown in Figure 5. White 
represents the value 4, snow covered land. Light grey shows the value 3, sea ice. Dark 
grey illustrates the value 2, land without snow. Lastly black illustrates the value 1, open 
water. 
 
Table 2: Description of IMS 1km snow product values physical meaning (U.S. National Ice Center 2004). 

Value Description 
0 
1 
2 
3 
4 

Outside coverage area 
Open water 
Land without snow 
Sea ice 
Snow covered land 

 

 
Figure 5: Example acquisition of IMS snow cover product from 20 May 2020. White represents the value 
4, snow covered land. Light grey shows the value 3, sea ice. Dark grey illustrates the value 2, land 
without snow. Lastly black illustrates the value 1, open water. 
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3.3 SMHI 
In situ measurements from the Swedish Meteorological and Hydrological Institute 
(SMHI) were used as ground truth data. SMHI manages several weather stations 
throughout Sweden where snow depth measurements are taken every day. The data is 
freely available to download from their website. The stations use a measuring stick 
placed on the ground to measure the snow depth. Measurements are conducted when 
more than half of the sample area is covered by snow (SMHI 2024). Along with snow 
depth in meters a code for the state of the ground is also included following a set of 
codes established by SMHI. The codes range from 0-19 with the codes 12-14 and 16-19 
indicating the presence of snow on the ground (SMHI 2024). The codes used in this 
study represent snow descriptions described in Table 3. 
 
Table 3: SMHI code convention of snow cover types based on their coverage and characteristics (SMHI 
2024). 

Code Description 

12 
 
13 
 
14 
 
16 
 
17 
 
18 
 
19 

Partly or completely covered of packed or wet snow – 
at least 50 % but not completely. 
Partly or completely covered of packed or wet snow – 
completely in an even layer. 
Partly or completely covered of packed or wet snow – 
completely in an uneven layer. 
Partly or completely covered of loose and dry snow – 
at least 50 % but not completely. 
Partly or completely covered of loose and dry snow – 
completely in an even layer. 
Partly or completely covered of loose and dry snow – 
completely in an uneven layer. 
Completely covered by snow with high snowdrift. 

 
The remaining codes indicate other types of ground state such as frost, flooded and 
sand. These categories were deemed irrelevant for the project and were thus not used 
and not described here. 
 
Stations located within the study area, that provided continuous time-series data from 
the start of the Sentinel-2 mission to the conclusion of the 2023 snow season, were 
selected as sources of ground truth data. This resulted in the following 15 stations: 
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Table 4: SMHI meteorological stations used in the study. Each station is identified by a unique station ID. 
The latitude and longitude of the station was used to make geographical analysis of the date from each 
station (SMHI 2024). 

Station ID Name  Latitude Longitude 
135580 
136560 
144040 
144220 
144240 
145090 
145150 
145500 
147390 
155770 
155940 
156230 
156790 
156880 
164730 

Lövberga 
Rossön 
Valsjöbyn 
Frostviken 
Fågelberget 
Hillsand 
Kyrktåsjön 
Avasjön-Borgafjäll 
Latikberg 
Kittelfjäl 
Mosekälla 
Bastansjön 
Baliken 
Fjällsjönäs 
Mjölkbacken 

63.9673 
63.9338 
64.0655 
64.3854 
64.3892 
64.8395 
64.2454 
64.8395 
64.6425 
65.2559 
65.7346 
65.3817 
65.2506 
65.6229 
66.1020 

15.8437 
16.3694 
14.1433 
14.314 
14.5262 
15.1065 
15.8454 
15.1065 
17.0833 
15.5229 
15.056 
16.197 
16.8563 
16.6157 
14.8465 

 
The data from the stations varied in terms of continuity. In the data from some stations, 
gaps were detected where no data was recorded. The reason for this is unknow but could 
be due to technical issues or maintenance that disrupted the data collection. These 
discontinuities mean that some of the conducted analyses couldn’t be performed for 
these stations due to the analysis requiring continuous data. 
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4 METHOD 
 
4.1 VALIDATION SENTINEL-2 AND IMS SNOW COVER PRODUCTS 
A comprehensive validation between ground truth in situ measurements and snow cover 
products from remote sensed data was conducted to evaluate the respective products. By 
comparing the snow cover products to in situ snow depth measurements it’s possible to 
determine the accuracy of the products in the study region (Klein & Barnett 2003; Dietz 
et al. 2012b; Gascoin et al. 2019; Chen et al. 2012). 
 
The entirety of the validation was done in Python. The Python modules Rasterio, 
GDAL, pandas, GeoPandas and Shapely was specifically used to handle raster images 
and geographical data. 
 
4.1.1 Station data extraction for validation 
 
Data from 15 SMHI snow monitoring sites was use as ground truth data and compared 
to data from the different snow cover products. Sentinel-2 FSCOG and IMS 1km snow 
cover products are both provided as raster data covering the whole study area. For the 
validation the coordinates of the stations were reprojected to each products CRS to 
ensure accurate comparison. The raster value for each product at the coordinates of the 
stations was then used to extract the snow cover information for all days where data was 
available. The analysis was done in Python using Pandas dataframes for managing the 
data, Rasterio and GDAL for raster operations and GeoPandas for geographical tubular 
data. 
 
To make a valid validation the data had to be filtered to only compare the snow cover 
product to the data from stations on days with clear sky. Therefore, acquisitions from 
the Sentinel-2 snow cover product that had clouds obscuring the stations were removed 
from the validation. The IMS product is not sensitive to cloud cover and can be used 
without needing to remove cloud cover (U.S. National Ice Center. 2008). The coarse 
resolution in the IMS product does however cause problems with stations close to 
waterbodies. Stations close to lakes can be misclassified as waterbodies in the IMS 
snow cover product. These stations that consistently were classified as waterbodies were 
removed from the validation to better represent the accuracy of the snow detection and 
not waterbodies.  
 
The validation was then performed for each station and day with available data. At each 
day the value of the Sentinel-2 FSCOG and IMS snow cover product was recorded as 
well as the SMHI station data. The result of the validation was a tabular dataset 
containing the snow cover information of each examined data source. The data of the 
snow cover is in binary form of snow or non-snow. The Sentinel-2 FSCOG snow cover 
product was converted from FSC to binary snow cover product by using a threshold of 
above 0 being classified as snow. 
 
4.1.2 Statistical metrics for station based validation 
The new dataset produced in the previous chapter contains the ground truth data from 
the SMHI dataset and the predicted data of the Sentinel-2 FSCOG and IMS snow cover 
products. The classes are snow or non-snow represented by the values 1 and 0 in the 
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dataset. To evaluate the accuracy of the snow cover product several statistical 
measurements commonly used to evaluate classification models were used. 
 
The accuracy measures how well a model classifies all instances correctly. It is 
calculated as the ratio of the sum of correctly classified true positives and true negatives 
and the total amount of instances (Kulkarni et al. 2020).  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
( 3 ) 

A true positive (TP) is in this case when both the ground truth data and predicted data 
are snow or as it is represented in the data the value 1. True negative (TN) is when both 
are non-snow or the value 0. False positive (FP) and false negative (FN) are cases where 
the predicted values do not match the ground truth. 
 
Precision of a model measures how many of the positive predictions that are correct. It 
gives an indication of how accurate the positive predictions are (Kulkarni et al. 2020). 
For snow cover classification it indicates how many of the predicted instances of snow 
cover contained snow. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
( 4 ) 

Recall or sensitivity of a model measure the ratio of positive instances that the model 
correctly classifies. It helps to asses if the model misses any positive instances 
(Kulkarni et al. 2020). For snow cover classification it explains how many of the 
instances of snow according to the ground truth that the model predicted as snow. A low 
recall means that the model missed many instances of snow. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
( 5 ) 

F1-score is the harmonic weighted mean of both precision and recall. It is used as a 
measurement for evaluating the  balance between how correct the model is versus how 
much it covers (Kulkarni et al. 2020). 
 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 

( 6 ) 

A confusion matrix is a statistical tool to evaluate the performance of a classification 
model. It gives an overview of the model’s predictions. This allows for an 
understanding of what the inaccuracies in the models predictions are (Kulkarni et al. 
2020). As the famous quote goes; “All models are wrong, but some are useful” (Box 
1979), it is important to understand how a model behaves and if it has a bias or 
variation. For classification models the confusion matrix is tool for that. Confusion 
matrixes for validation and intercomparison of snow cover models have previously been 
used for the algorithm behind the Sentienel-2 FSCOG snow cover product and MODIS 
snow cover product (Gascoin et al. 2019; Klein & Barnett 2003). 
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The amount of TN, FN, FP and TP that a model makes are presented in a confusion 
matrix, se Figure 6 for an example of a binary confusion matrix. A perfect model would 
generate no FP or FN and have all the instances in TN and TP. This can be seen in the 
confusion matrix as the false classified instances lies outside of the diagonal in the 
matrix. 
 

True 

 Negative Positive 

Negative TN FP 

Positive FN TP 

Predicted 
Figure 6: Example of a binary confusion matrix for classifications with positive and negative instances. 
Predicted values from a model and true values that the predicted values are compared to. 

Due to the different temporal resolution of the Sentinel-2 FSCOG and IMS snow cover 
products, they have varying amounts of snow and non-snow instances in their datasets. 
This inconsistency makes it challenging to directly compare the confusion matrixes of 
the two products. To address this issue, the confusion matrixes were normalized 
according to a method described by Hardin & Shumway (1997). By normalizing the 
confusion matrices, the ratio of predictions can be presented within the confusion matrix 
instead of absolute numbers. 
 
4.2 CLOUD IMPACT ANALYSIS OF SENTINEL-2 SNOW COVER 

PRODUCT 
Cloud cover is one of the main limitations in remote sensing of snow cover. Areas with 
clouds cover inhibit a clear view of the ground and no light in the spectrum relevant for 
snow detection can pass through clouds and reach a sensor in space. Several studies 
have previously attempted to limit the influence of cloud cover in snow cover products 
from the MODIS (Gafurov & Bárdossy 2009, Parajka & Blöschl 2008, Wang et al. 
2008). The snow cover product from Sentinel-2 faces similar limitations as the MODIS 
product (Copernicus Land Monitoring Service 2018). To better understand and quantify 
the impact of cloud cover on the Sentinel-2 snow cover product, an analysis of the 
frequency of cloud-covered days at each SMHI station was conducted. This analysis 
aimed to determine how often cloud cover obstructs snow detection in the Sentinel-2 
imagery. The analysis was implemented using Python, with Pandas dataframes 
employed to manage and process the data efficiently. By assessing the extent of cloud 
cover, the aim is to highlight the challenges in snow cover detection and propose 
potential strategies for improving data accuracy under cloudy conditions. 
 
The cloud impact analysis was performed for each SMHI station. To calculate the 
number of cloud days in the Sentinel-2 FSCOG data at each station the value 255 which 
indicates cloud cover was used. The number of days with 255 was then used as the total 
number of cloud cover days for each station. By grouping each day of the year and 
calculating the sum for each group, the cloud cover for each day could be calculated. 
Because of the gaps in the Sentinel-2 data due to cloud cover and insufficient 
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illumination, the distribution of acquisitions is uneven through the year. Some days have 
therefore more acquisitions than other. To better show the distribution of cloud cover 
during the year, the amount of cloud cover days was normalized by the number of 
acquisitions for each day of the year. The data for each month was then grouped 
together and averaged to display the mean percentage of days impacted by cloud cover 
for each month. 
 
To analyze the ratio of individual pixels that are unusable because of clouds a point-
based analysis of the whole dataset was conducted. An algorithm that counted all the 
pixels in the FSCOG  product with the value 205 (clouds) and 255 (no-data) (Copernicus 
Land Monitoring Service 2018). To ensure the accuracy of the dataset, the count of 
pixels was conducted separately so that pixels with no data could be excluded from the 
total pixel count. Additionally, a count of the total number of pixels in the dataset was 
performed. Using these counts, the ratio of individual pixels classified as clouds was 
then calculated according to equation ( 6 ). 
 

𝑅𝑎𝑡𝑖𝑜	𝑜𝑓	𝑐𝑙𝑜𝑢𝑑	𝑝𝑖𝑥𝑒𝑙𝑠 =
𝐶𝑙𝑜𝑢𝑑	𝑝𝑖𝑥𝑒𝑙𝑠 − 𝑛𝑜𝑑𝑎𝑡𝑎	𝑝𝑖𝑥𝑒𝑙𝑠
𝑡𝑜𝑡𝑎𝑙	𝑝𝑖𝑥𝑒𝑙𝑠 − 𝑛𝑜𝑑𝑎𝑡𝑎	𝑝𝑖𝑥𝑒𝑙𝑠  

( 6 ) 

 

The ratio of cloud pixels in the Sentinel-2 FSCOG dataset gives an indication of how 
much of the data is usable for snow cover mapping. This information was used to 
compare the original product to the one created in this study. 
 
Lastly an analysis of the whole FSCOG dataset was conducted to count the number of 
acquisitions for each month regardless of cloud cover or the value given by the snow 
product. This was meant to illustrate how the temporal distribution of the product is 
spread out across the year. This have previously been done for the MODIS snow cover 
product to evaluate the cloud cover percentage across Europe (Dietz et al. (2012b). 
 
4.3 SNOW COVER DYNAMICS 
Two snow cover dynamics parameters were considered for the two snow cover products 
Sentinel-2 FSCOG and IMS. These parameters indicate how well the snow products are 
at describing the seasonal trends of the snow cover at the stations. The parameters are 
important for climate studies to track changes in snow cover trends as well as in 
hydrological modelling. Binary snow cover data limits the parameters that can be 
observed. For example, it is not possible to calculate the maximum height of the snow 
cover since no snow depth data is available for the snow cover products in this study. 
Snow cover onset and end date as well as snow cover duration are therefore chosen as 
the snow dynamic parameters to be investigated in this study. The analysis was done in 
Python using Pandas dataframes for managing the data.  
 
4.3.1 Snow cover onset and end date 
For each station and year, the first observation of snow cover in the hydrological year 
was determined to be the SCOD. Subsequently the last observed day with snow cover in 
the hydrological year was determined to be the SCED (Klein et al. 2016). This was done 
with the point data from the validation of the snow cover products. To calculate the 
SCOD for each hydrological year a filter for each year and station was used to separate 
the dataframe into partitions of station and year. Then the first day with snow cover was 
saved in another dataframe with information about the year, station number, longitude, 
latitude and the SCOD. For the SCED the same procedure was done and the last day in 
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the hydrological year with snow cover was saved to the new dataframe. The new 
dataframe then contained the SCOD and SCED for each year and stations. The mean of 
SCOD and SCED for each station across all years was calculated. The difference for 
each snow cover product and SMHI validation data was then calculated to determine the 
combined accuracy of the SCOD and SCED for each product. 
 
4.3.2 Snow cover duration 
Snow cover duration (SCD) is calculated by counting the number of days with snow 
cover during the hydrological year. It is measured in days and has a maximum value of 
365 or 366 days for areas with persistent snow cover such as glaciers (Dietz et al. 
2012b). Before the SCD could be calculated it was necessary to apply a gap filling 
method for the Sentinel-2 FSCOG snow cover product due to the significant gaps in the 
acquisitions because of Sentinel-2’s low temporal resolution. A technique previously 
used with the MODIS snow cover product (Gafurov & Bárdossy 2009; Dietz et al. 
2012b) was applied to the Sentinel-2 FSCOG snow cover product to fill in the gaps 
between acquisitions. The method utilizes a forward fill method which compares the 
day with no data (either by no acquisition of cloud cover) with the previous day and 
uses that value (Gafurov & Bárdossy 2009). This simple method carries the last 
observed snow cover value forward until a new, valid data is acquired. This creates an 
uninterrupted timeseries of the snow cover from the Sentinel-2 snow cover product.  
 
The data used for the calculations of the SCD was the same as in the calculation of 
SCOD and SCED. First the forward fill method was performed on the dataframe to 
create a continuous dataset. For each station and years, the number of days in each 
hydrological year with snow cover was then calculated. Since the snow cover was 
binary with snow cover having the value 1 this was easily done by calculating the sum 
of the snow column for each year which gives the SCD. The SCD was then saved in a 
new dataframe along with station number, longitude, latitude and year. The mean SCD 
for each station across all years was calculated and then compared to the SMHI 
validation data to determine the SCD accuracy of the snow products.  
 
4.4 SENTINEL-2 AND IMS SPATIOTEMPORAL FUSION ALGORITHM 
The algorithm for the spatiotemporal fusion integrates the high spatial resolution 
Sentinel-2 FSCOG snow cover product and the high temporal resolution IMS snow cover 
product to create an improved gap-free snow cover product with good spatial and 
temporal resolutions. This method aims to mitigate the limitations of each product by 
combing their separate strengths to provide a more detailed and comprehensive 
monitoring of the snow cover. The method draws inspiration from Rittger et al. (2021) 
to use a high resolution snow cover dataset in combination with a daily lower resolution 
snow cover dataset to create a better snow cover product. The algorithm here utilizes a 
more simple change detection (Hecheltjen et al. 2014) of the IMS as the input for 
extrapolating the Sentinel-2 FSCOG data. 
 
The algorithm begins with initializing the directories for the Sentinel-2 FSCOG and IMS 
datasets. The files are moved to the directories and named to the same naming 
convention of type_year_dayofyear_code. Type is either FSC or IMS depending on the 
dataset. This code was only used for the FSCOG dataset to separate the different 
Sentinel-2 tiles into groups for easier access and more efficient processing. The IMS 
and FSCOG products are provided in different CRS. Before any fusion of the two was 
performed they need to have the same CRS to ensure the images align geographically. 
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The lower spatial resolution of the IMS product resulted in the images having fewer 
pixels which makes reprojection less computationally expensive. The IMS product was 
therefore reprojected to match the CRS of FSCOG, EPSG:32633. Since the IMS product 
contains the whole northern hemisphere only a small part was needed to cover the study 
area. A mask was applied to the images to extract and save only the area covered by the 
study area. The steps ensured that the data was prepared and stored in a format that fits 
the fusion algorithm. 
 
A separation of the dataset was made with the codes allowing each code and its 
corresponding Sentinel-2 FSCOG tile to be processed in parallel. This was done to speed 
up the run time of the code by using the multiple threads available on in the CPU on the 
laptop that was used. Similar strategies have been proposed by Zhu et al. (2018) to 
improve the efficiency of spatiotemporal fusion algorithms.  
 
The main part of the algorithm iterates through each day during a time interval set by 
the user. The scheme follows the logic described next and illustrated in Figure 7. If the 
current day has an acquisition from the Sentinel-2 FSCOG product that image is then 
used in the new dataset and the algorithm proceeds to the next day. That essentially 
copies the existing FSCOG product. In the cases where there is no Sentinel-2 FSCOG on 
the current day, the fusion part is applied. The algorithm calls for a function to calculate 
a difference mask between two IMS images, the first IMS from the current day and the 
other from the following day. The resulting difference mask provides information about 
the change in snow cover that has occurred between the two days according to the IMS 
dataset. It can be both increase in snow from snowfall or snow drift or decrease in snow 
from melting of the snowpack. The mask is binary and has pixels of value 1 where there 
is a difference in the snowpack and 0 where no change has occurred. 
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Figure 7: Illustration of the algorithm for temporal fusion of the Sentinel-2 FSCOG and IMS snow cover 
products. Green symbols indicate available data for the two datasets and red indicates when no data is 
available. The intermediate products created from the mask, previous FSCOG image and next image is 
shown in white between the Sentinel-2 FSCOG images.  

 
The difference mask is then used to project the subsequent Sentinel-2 FSCOG product on 
the previous one. The area where a change has occurred according to the IMS difference 
mask outlies the part that will be projected. A part of the projection function makes sure 
to not include cloud or no-data pixels from the subsequent FSCOG image onto the 
previous one. The value from the previous image is the used. This ensures that the 
previous days pixels carry over to the current day without projection unusable data to 
the intermediate. The projection is conducted by making a copy of the previous FSCOG 
image and setting the values within the difference mask to the values of the subsequent 
FSCOG image. An input parameter to the algorithm determines the maximum allowed 
gap between FSCOG images where the fusion should take place. If the number of days 
without a new FSCOG image exceeds this limit a copy of the current days IMS image is 
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used instead. This continues until a new FSCOG is detected for the current day. The 
process then repeats for each day throughout the specified time interval. 
 
A new dataset was created using the algorithm with a gap limit of 2 days. This dataset is 
named V2, referring to it both being version of the Sentinel-2 product and having a gap 
limit of 2 days. After 2 days without new FSCOG images the IMS images are used instead. 
The new images in the new dataset are saved as GeoTIFF files with geographical 
metadata of the projection from the FSCOG images. LZW compression in the GDAL write 
function was used to reduce the file size of the images in the new dataset. This 
compression algorithm is lossless which was important since the precision of the data is 
crucial to accurately map the snow cover. 
 
4.5 VALIDATION OF NEW V2 DATASET AND COMPARISON TO 

SENTINEL-2 FSCOG 
The validation for the new product was conducted for the new dataset V2 in the same 
manner as described in Section 4.1 for the Sentinel-2 FSCOG snow cover product. The 
new product was compared to the SMHI ground truth data to measure the statistical 
metrics accuracy, precision, recall and F1-score as in Section 4.2. The same snow 
dynamic metrics as in Section 4.3 were also calculated for the new dataset. 
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5 RESULTS 
 
Presented in part 1 are the results from the validation with the snow cover products Sentinel-2 
FSCOG and IMS to SMHI data. The validation was done for the study area presented in section 
2 and SMHI data from the stations presented in section 3.3. The results from the validation of 
the new dataset, referred to as V2, generated by the spatiotemporal fusion algorithm described 
in the previous section, are presented in Part 2. Additionally, examples of snow cover maps 
derived from the new dataset are provided to illustrate the effectiveness and accuracy of the 
developed algorithm. A gap limit of 2 days was used in the algorithm for the validation. An 
additional dataset with a gap limit of 5 days was used for pixelwise cloud analysis to evaluate 
the parameters effect on the available data. 
 
5.1 POINT BASED VALIDATION OF SENTINEL-2 AND IMS SNOW COVER 

PRODUCTS 
In this section the results from the validation of Sentinel-2 FSCOG and IMS snow cover 
products are presented. 5 SMHI stations are excluded for the validation of the IMS product 
since the water mask in the IMS product consistently classifies these stations as ice or water. 
Therefore, only 10 stations were used for the validation of the IMS product compared to 15 
stations for the Sentinel-2 FSCOG product. The excluded stations were stations 144040, 
144220, 144240, 145090 and 164730. 
 
In the Senintel-2 FSCOG dataset no data is produced and distributed when there is insufficient 
illumination as there is in the winter months. No information about the cloud cover during this 
period is thus also not available. To show the effect of this the distribution throughout the year 
of all the available Sentinel-2 FSCOG acquisitions for the whole study area are shown in 
Figure 8. The figure illustrates how big percentage of the distributed data is available for each 
month. The figure shows the average for the whole study period. This shows which months 
had the most acquisitions and which had the least. Most acquisitions during the study period 
happened in the months February, March, April and May. December had no acquisitions and 
January had the lowest number of acquisitions. This shows the lack of acquisitions during the 
critical winter months of the snow season where snow is present. 
 

  
Figure 8: Distribution of FSCOG acquisitions throughout the year. The distribution of total acquisitions for all the 
Sentinel-2 FSCOG acquisitions on the y-axis and month on the x-axis 
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The validation of the two snow cover products produced an initial confusion matrix which 
values are presented in Table 5. In Figure 9 are the normalized confusion matrixes for the 
validation of snow cover products evaluated on the SMHI ground truth data. The values are 
normalized by dividing the values with the total number of comparisons for each snow cover 
product. For each confusion matrix, the comparisons of snow and non-snow classifications 
sum to 1. 94% of the comparisons between FSCOG and SMHI were correctly classified as 
snow cover. 97% were correctly classified as bare ground. 3% were incorrectly classified by 
FSCOG as snow when there was no snow present according to the ground truth data. 6% were 
incorrectly classified as bare ground when snow cover was present according to the ground 
truth data. 97% of the comparisons between IMS and SMHI were correctly classified as snow 
cover. 89% were correctly classified as bare ground. 11% were incorrectly classified by 
FSCOG as snow when there was no snow present according to the ground truth data. 3% were 
incorrectly classified as bare ground when snow cover was present according to the ground 
truth data.  
 
Table 5: Validation of Sentinel-2 FSCOG and IMS snow products. Total number of TP, TN, FP and FN for each 
product. 

Confusion Metric Sentinel-2 FCSOG IMS 
True Positive 
True Negative 
False Positive 
False Negative 

1730 
1589 
52 
111 

9645 
5396 
668 
275 

 
 

 

Figure 9: Confusion matrix of Sentinel-2 FSCOG and IMS snow products evaluated against SMHI ground truth 
data. Values normalized to account for the number of acquisitions per snow product. The values represent the 
ratio that the snow products were either TN in top left, FP top right, FN lower left and TP lower right. 

Presented in Table 6 are the calculated statistical metrics for each snow cover product from 
the validation on the SMHI ground truth data. Sentinel-2 FSCOG show higher values for 
accuracy, precision and F1-score while IMS had higher recall.  
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Table 6: Metrics from the validation of the snow cover products compared to the SMHI ground truth data. 
Sentinel-2 FCSOG on in the middle and IMS on the right. The accuracy, precision, recall and F1-score are 
presented for both the snow products. 

Metric Sentinel-2 FCSOG IMS 
Accuracy 
Precision 
Recall 
F1-Score 

0.95 
0.97 
0.94 
0.96 

0.94 
0.94 
0.97 
0.95 

 
5.2 CLOUD IMPACT ANALYSIS OF SENTINEL-2 FSCOG SNOW COVER 

PRODUCT 
The analysis of the Sentinel-2 FSCOG cloud cover at the stations is presented in the following 
section. Presented in Figure 10 are the percentage of data loss due to cloud cover for each 
month in the Sentinel-2 FSCOG dataset for all stations combined. For most months around 
40% of the available data is unusable due to cloud cover. The month in the Sentinel-2 FSCOG 
dataset with most days obscured by clouds was October. The month with the least days 
obscured by clouds was July. 
 

  
Figure 10: Percentage of data loss due to cloud cover for all stations, aggregated for each month in the Sentinel-2 
FSCOG snow cover product. 

In Figure 11 the yearly percentage of data loss due to cloud cover are presented for each 
station. Each color represents a different SMHI station. The pixelwise percentage of data loss 
due to cloud presence for the whole Sentinel-2 FSCOG dataset was 48.8%. This percentage 
considers all the pixels in the images and not only the pixels at the SMHI stations. Station 
136560 showed 100% data loss in 2017 due to there only being one acquisition available in 
that year which in turn was unusable because of cloud cover. 
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Figure 11: Percentage of data loss due to cloud cover at all stations for the Sentinel-2 FSCOG snow cover product. 
Each year is grouped together on the x-axis. 

Figure 12 shows a scatter plot of the relationship between cloud cover days with longitude 
and latitude. The longitudes range from 14 to 17 degrees east and the latitudes range from 64 
to 66 degrees north which is within the study area. A negative correlation between cloud cover 
and longitude is observed for the Sentinel-2 FSCOG product with a R2 value of 0.49. No 
correlation was observed when compared to latitude because of the low R2 value. 
 

   
Figure 12: Percentage of data loss due to cloud cover at each station for the Sentinel-2 FSCOG product averaged 
across all years. Presented here with the latitude (to the left) and longitude (to the right) of the stations. R2 of 
0.49 when plotted against longitude and R2 of 0.04 when plotted against latitude.  

5.3 SNOW COVER DYNAMICS FROM SENTINEL-2 AND IMS SNOW COVER 
PRODUCTS 

In this section the snow cover dynamics from the validation are presented. The results shown 
here 10 stations (or latitudes as the stations are represented here) for Sentinel-2 FSCOG and 
therefore less than the total 15 stations that were used in the study. Several of the SMHI 
stations had long gaps in the snow data. Without consistent data of the snow cover it is not 
possible to calculate the accurate snow dynamic metrics. Therefore, stations 136560, 144040, 
144220, 145090 and 155940 were excluded from the validation. For IMS the stations 144240 
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and 164730 are also excluded since previously because of them being classified as water or 
ice. The forward fill method described in section 4.3.2 was used to make the Sentinel-2 
FSCOG data continuous which was needed for calculating SCD.  
 
Figure 13 illustrates the relationship between snow cover days and latitude. The snow cover 
days for each station (represented in the figure by their corresponding latitudes) are 
aggregated across all years and the average is presented here. More snow cover days were 
observed by the IMS snow cover product as compared to the Sentinel-2 FSCOG snow cover 
product. Higher amount of snow cover days is observed at higher latitudes. The average 
absolute difference between the Sentinel-2 FSCOG data and SMHI data was 19.4 days. The 
average absolute difference between the IMS data and SMHI data was 7.4 days. 
 

 
 
Figure 13: Comparison of snow cover days as a function of latitude. Each year is aggregated for the stations and 
the mean is presented. On the x-axis is the SMHI station latitude. SMHI ground truth data in red, IMS in black 
crosses and Sentinel-2 FSCOG in green crosses. 

The SCOD and SCED for the snow products and the SMHI data is presented in Figure 14. 
The hydrological year starts at the bottom of the y-axis. SMHI stations are represented on the 
x-axis by their latitude. Longer snow seasons are observed for higher latitudes. The average 
absolute difference between the Sentinel-2 FSCOG data and SMHI data was 21.1 days. The 
average absolute difference between IMS data and SMHI data was 10.3 days. 
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Figure 14: Snow onset and snow end dates for the snow cover products and SMHI ground truth data. Onset is 
presented with downward-pointing markers, while end is presented with upward-pointing markers. On x-axis is 
the SMHI station latitude. SMHI values in red, Sentinel-2 FSCOG in green and IMS in black. 

 
5.4 STATION BASED VALIDATION OF V2 DATASET FROM SPATIOTEMPORAL 

FUSION ALGORITHM 
In this section the results from the validation of the new V2 dataset from the spatiotemporal 
fusion algorithm is presented. The data is validated against the SMHI ground truth data. 
Figure 15 show the distribution of the available V2 snow cover data throughout the year. The 
values are an aggregation for all the years of the study period. This shows how large of a 
percentage of the acquisitions that occur for each month. The summer months of June, July 
and August show the least amount of available snow cover data. The distribution of the 
acquisitions is roughly equal throughout the year. The V2 snow cover product has data even 
during the months with polar darkness. 
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Figure 15: Distribution of available V2 acquisitions throughout the year. The distribution of total acquisitions for 
all the V2 acquisitions on the y-axis and month on the x-axis 

 
The V2 snow cover product had a total of 26 809 comparisons made with the ground truth 
data. 12 762 of these were correctly classified as snow cover. 11 335 were correctly classified 
as bare ground. 941 were incorrectly classified by FSCOG as snow when there was no snow 
present according to the ground truth data. 1771 were incorrectly classified as bare ground 
when snow cover was present according to the ground truth data. Figure 16 shows the 
normalized confusion matrixes from the validation. For validation data for each individual 
station see Appendix 9.1.3. The normalized confusion metrics were 88% TP, 92% TN, 8% FN 
and 12% FP.  
 

 
Figure 16: Normalized confusion matrix of V2 snow cover product evaluated on SMHI Ground truth data. TN in 
top left, FP top right, FN lower left and TP lower right. The values are normalized to account for the number of 
acquisitions per snow product. 

Presented in Table 7 are the calculated statistical metrics for the V2 snow cover product from 
the validation on the SMHI ground truth data. All the metrics are lower for the V2 snow cover 
product compared to those from the original snow cover products. The V2 product had a 
higher precision than recall. 
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Table 7: Metrics from the validation of the V2 snow cover product compared to the SMHI ground truth data. The 
accuracy, precision, recall and F1-score is presented for the validation. 

Metric V2 
Accuracy 
Precision 
Recall 
F1-Score 

0.90 
0.93 
0.88 
0.90 

5.5 DATA AVAILABILITY OF V2 SNOW COVER PRODUCT 
The results from the same method of cloud cover impact analysis that was done for the 
Sentinel-2 product are here presented for the V2 snow cover data. This aims to show the 
influence of cloud cover to the usability of the snow cover product has changed for the V2 
product after the spatial fusion is used to combine IMS and Sentinel-2 data. Presented in 
Figure 17 is the percentage of data loss due to cloud cover for each month in the V2 dataset 
for all stations combined. The months of March, April and May show the most cloud cover in 
the V2 product compared to the rest of the year. These months saw the largest loss of usable 
data due to cloud cover. The lowest occurrence of clouds in the V2 product was in January.  
 

 
Figure 17: The percentage of data loss due to cloud cover for all stations, aggregated for each month in the V2 
snow cover product. 

In Figure 18 the yearly percentage of data loss due to cloud cover is presented for each 
station. Each color represents a different SMHI station. The pixelwise percentage of data loss 
due to cloud cover for the whole V2 dataset was 21.5%. This percentage considers all the 
pixels in the images and not only the pixels at the SMHI stations. When the gap limit was set 
to 5 days the pixelwise percentage of data loss due to cloud cover was 30.7%. The percentage 
of data loss due to cloud cover, both for the two days and the five days gap limit, was lower 
than the original 48.8% of Sentienl-2 FSCOG snow cover product for 2- and 5-days gap limit. 
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Figure 18: The percentage of data loss due to cloud cover at all stations for the V2 snow cover product. Each 
year is grouped together on the x-axis. 

5.6 PART 2: SNOW COVER DYNAMICS 
This section focuses on the snow cover dynamics observed during the validation of the V2 
dataset from the spatiotemporal fusion. The analysis includes data from 10 stations (referred 
to as latitudes in this context), which is fewer than the 15 stations originally used for 
validation in this study. The SMHI stations 136560, 144040, 144220, 145090, and 155940 
had substantial gaps in their snow data, making it impossible to accurately calculate snow 
dynamic metrics. Therefore, they were excluded from the analysis of snow cover dynamics. 
 
Figure 19 illustrates the relationship between snow cover days and latitude. The snow cover 
days for each station (represented in the figure by their corresponding latitudes) are 
aggregated across all years and the average is presented here. The V2 data show higher snow 
cover days compared to the original FSCOG snow cover product. Higher amount of snow 
cover days is observed at higher latitudes. The average absolute difference between the V2 
snow cover data and SMHI data were 12.8 days. This is a lower number compared to 19.4 
days of the original Sentinel-2 FSCOG snow cover product but higher than the value of 7.4 for 
IMS.  
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Figure 19: Comparison of snow cover days as a function of latitude for the V2 and Sentinel-2 FSCOG snow cover 
products. Each year is aggregated for the stations and the mean is presented. On the x-axis is the SMHI station 
latitude. SMHI ground truth data in red, V2 in blue crosses, Sentinel-2 FSCOG in green crosses and IMS in black. 

The SCOD and SCED for the snow products and the SMHI data is presented in Figure 20. 
The hydrological year starts at the bottom of the y-axis. SMHI stations are here represented 
on the x-axis by their latitude. Longer snow seasons are observed for higher latitudes. The 
average absolute difference between the V2 data and SMHI data were 10.3 days. This is lower 
than the 21.1 days of the original Sentinel-2 FSCOG snow cover product but higher than the 
value of 10.3 for IMS. 
 

  
 
Figure 20: Snow onset and snow end dates for the V2 and original Sentinel-2 FSCOG snow cover products and 
SMHI ground truth data. Onset is presented with downward-pointing markers, while end is presented with 
upward-pointing markers. On the x-axis is the SMHI station latitude. SMHI values in red, Sentinel-2 FSCOG in 
green, V2 in blue and IMS in black. 
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5.7 PART 2: COMPARISON OF V2 SNOW COVER PRODUCT TO ORIGINAL 

SENTINEL-2 FSCOG AND IMS SNOW COVER PRODUCTS 
This section presents examples of the new snow cover product from different dates and 
regions within the study area. Additionally, comparisons of the V2 snow cover product to the 
original Sentinel-2 FSCOG and IMS snow cover products are presented. An example of the 
difference mask use in the temporal fusion algorithm is also presented. 
 
Figure 21 illustrates two Sentienel-2 FSCOG snow cover products to the left. They are from 10 
and 13 May 2018. The region is the Sentinel-2 tile WWM. Snow is show in grey, bare ground 
in black and clouds in white. The leftmost image that is from earlier in the snow season show 
more snow compared to the middle one. The middle one that’s from later in the snow season 
have more cloud cover. To the right is a result from the spatiotemporal fusion algorithm from 
the V2 datset. It is based on the two Sentienel-2 FSCOG images and uses the difference mask 
presented in Figure 22 to fuse the images and create this image for 12 May 2018. It has the 
same amount of cloud cover as the leftmost image. The snow cover extent is less than the first 
image but larger than the second image. 
 

 

Figure 21: To the left and middle are two subsequent Sentinel-2 FSCOG from 10 May 2018 and 13 May 2018. 
The images have the extent of the Sentinel-2 tile id WWM. To the right is the resulting intermediate snow map in 
the V2 dataset from the fusion algorithm based on the two FSCOG images. 

The temporal fusion algorithm uses the IMS images to detect the difference in the snowpack. 
This allows the subsequent Sentienel-2 FSCOG image to be projected on the previous one 
according to the detected change. Figure 22 shows two IMS images to the left. They cover the 
region of the Sentienel-2 tile WWM. The dates are 10 and 13 of May 2018. Snow is presented 
in white, waterbodies in grey and black is bare ground. The two IMS images show how the 
SCE decreases as the snow season comes to an end in the spring. To the right is the difference 
mask created from subtracting the two IMS images from each other. The white parts indicate 
where change is detected and black where no change occurred. The difference mask show 
changes in the middle part of the image where there was snow in the first IMS image. No 
change is detected where both IMS images showed bare ground. 
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Figure 22: An example of how the difference mask is created from two IMS images. The images have the extent 
of the Sentinel-2 tile id WWM. To the left and middle are two following IMS acquisitions from 10 May 2018 
and 13 May 2018. To the right is a difference mask created by subtracting the two IMS images.
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6 DISCUSSIONS 
 
The chapters 6.1 to 6.3 present a discussion of part 1 of the study. These were the results from 
the validation of the two snow cover products used in this study, Sentinel-2 FSCOG and IMS. 
The validation was conducted at each station in the SMHI data that was used as ground truth 
data. The stations were in the mountainous regions of Västerbotten and northern Jämtlands 
county. Snow cover dynamics of both the snow cover products were compared to the values 
derived from the SMHI ground truth data. An analysis of the cloud cover and data availability 
was conducted for the Sentienel-2 FSCOG snow cover product. 
 
The chapters 6.4 to 6.7 present a discussion of part 2 of the study. These were the results from 
the validation of the V2 snow cover product created from the spatiotemporal fusion algorithm 
developed in this work. The validation was made with the same SMHI ground truth data as in 
part 1. The snow cover dynamics of the new V2 snow cover product was compared to the 
original Sentienel-2 FSCOG data and the ground truth data. The availability of V2 data and the 
cloud cover was also analyzed in a similar manner to that which was made to the Sentinel-2 
FSCOG product. Examples of the V2 product are presented along with the IMS and Sentinel-2 
FSCOG images used to create these examples. 
 
These parts aim to discuss how the snow products performed in the mountainous regions of 
northern Sweden compared to the in situ measurements at the SMHI stations. The V2 product 
is the result of combining these through spatiotemporal fusion to extract the best aspects of 
each product. The discussion aims to address the opportunities and challenges that were 
discovered in the application of spatiotemporal fusion algorithms to these snow cover 
products. 
 
6.1 PART 1: POINT BASED VALIDATION OF SENTINEL-2 AND IMS SNOW 

COVER PRODUCTS 
The validation of the Sentienel-2 FSCOG and IMS snow cover products showed that they both 
had high accuracies of more than 90 % when evaluated on the SMHI ground truth station data 
as seen in Table 6. According to Table 5, IMS had more comparisons made due to the higher 
temporal resolution of the product. IMS is a daily product while Sentienel-2 FSCOG has a 
temporal resolution of 5-10 days (U.S. National Ice Center 2004, Copernicus Land 
Monitoring Service 2018). IMS show almost 10 times the number of comparisons made to the 
validation SMHI dataset than Sentinel-2 FSCOG. Despite the temporal resolution not being 10 
times better. This can be a result of the polar night at these latitudes (Dietz et al. 2012b) that 
leads to insufficient illumination for Sentinel-2 FSCOG. The differences in temporal and spatial 
resolution are important to consider when comparing the accuracy of the two snow cover 
products. Different applications in monitoring of snow cover dynamics have different 
requirements of spatial and temporal resolution. SCD can benefit from higher spatial 
distribution if the snow cover is highly heterogenous. SCOD and SCED might on the other 
hand need high temporal resolution to detect rapid changes in the start and end of the snow 
season not to miss the day when snow cover starts or ends. 
 
To compare the snow cover products performances with a confusion matrix the normalized 
confusion matrix in Figure 9 is more suitable than the absolute numbers from the 
unnormalized confusion matrix. IMS had higher accuracies for TP with 97% compared to 
94% of Sentienel-2 FSCOG. IMS therefore more seldomly miss detecting snow cover. 
Sentienel-2 FSCOG on the other hand had better TN of 97% compared to 89% of IMS and are 
thus better at detecting when no snow is present. This is reasonable since snow and no snow 
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cover are the opposites of each other. Sentienel-2 FSCOG have higher FN since it tends to 
underestimate SCE. This is also illustrated in Table 6. Sentienel-2 FSCOG had higher precision 
than recall, which means that while a greater portion of its positive snow cover classifications 
are correct, it misses some of the instances when snow was present. In contrast, IMS had 
lower precision than recall which indicates that it is less likely to miss snow cover but 
sometimes classifies bare ground as snow covered. This agrees with the findings that the 
creators of the LIS algorithm for the Sentienel-2 FSCOG product found of it underestimating 
snow detection. The authors used a similar approach of validation with data from snow 
stations (Gascoin et al. 2019). 
 
When assessing the total performance of the two snow cover products, the F1-score is a good 
indication since it weights both the recall and precision into a harmonic weighted mean. 
Sentienel-2 FSCOG had a higher F1-score compared to IMS if only slightly higher indicating a 
better overall snow cover product. This was valid for the comparison on the SMHI station 
data. 
 
The IMS snow cover product is produced with information from in situ measurements in 
some instances. Information about when this happens is not available. This is an issue since 
the possibility of validating the IMS product on the same in situ data as it was produced from 
can’t be ensured. This method of validating the IMS product on in situ measurements has 
been performed previously (Chen et al. 2012) and this study found similar accuracy as 
previous studies have found between 85-95% (Helfrich et al. 2018). It is still possible that 
these measurements are biased when the in situ measurements are used to produce the IMS 
product. In further studies it would be recommended to further examine the possibilities of 
obtaining information about when and which in situ measurements are used for the IMS 
product. 
 
6.2 PART 1: CLOUD IMPACT ANALYSIS OF SENTINEL-2 FSCOG SNOW COVER 

PRODUCT 
Since the Sentienel-2 FSCOG snow cover product is based on remote sensed data in the visible 
part of the spectrum the product is hindered by cloud cover and insufficient illumination due 
to the sun incident angle (HR-S&I 2023). Figure 8 shows that in the winter months there are 
very few acquisitions for the Sentinel-2 snow cover product that can be a result of the low 
illumination during winter. This highlights the problem with using optical sensors for snow 
cover mapping. The cloud impact analysis was conducted to quantify the extent of the 
problem with cloud cover and its influence on the availability of snow cover data in the 
Sentienel-2 FSCOG snow cover product. The IMS dataset was not analyzed for impact of cloud 
cover since it uses multiple sources such as microwave that can penetrate clouds. No cloud 
coverage are therefore present in the IMS snow cover dataset (U.S. National Ice Center 2004). 
 
Cloud cover was present in the FSCOG product around 40% of the times that the product was 
compared to the values at the SMHI stations as seen in Figure 10. A seasonal pattern of less 
clouds during the summer months compared to the winter is observed in the analysis. This is a 
pattern observed by Dietz et al. (2012b) for the MODIS snow cover data. The distribution of 
FSCOG acquisitions throughout the year varies greatly as observed in Figure 11. This might 
lead to inaccurate estimations of cloud cover for the months January and December since very 
few or no acquisitions were made in those months. Figure 10 also highlights the problem that 
polar darkness poses on snow cover mapping in high latitude regions. The absence of 
acquisitions in December and January are caused by insufficient sunlight during those 
months. This is also observed in the MODIS snow cover product by Dietz et al. (2012b). 
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In 2021 the stations 144220 and 144240 had higher percentage of data impacted by clouds 
than the other stations as seen in Figure 11. For those stations around 70% unusable data due 
to cloud cover was observed for 2021, leading to very little usable snow cover data. Station 
136560 saw 100% unusable data due to cloud cover in the FSCOG acquisitions from 2017. The 
year of 2017 only had one acquisition for over the station 136560 which was obscured by 
clouds resulting in the 100% cloud cover. From Figure 12 it was found that the cloud cover in 
the study varies with longitude and not with latitude. To validate this an additional analysis 
which includes elevation data for the stations would be needed. The western regions of the 
study area are more mountainous which can explain the trend seen for longitude. The land 
cover type is similar along a latitudinal path in the study area. This combined with the 
relatively short latitudinal difference of only 2 degrees can explain why there is no trend in 
cloud cover with latitude. 
 
For the whole dataset at every pixel, clouds were present 48.8% of the time which is close to 
the 46.8% that Dietz et al. (2012b) found for the MODIS snow cover product over the whole 
of Europe. A more extensive study for the pixelwise cloud cover distribution over the seasons 
would be useful to fully evaluate the impact of cloud cover in the FSCOG product. That was 
not done in this study due to time constraints. 
 
6.3 PART 1: SNOW COVER DYNAMICS OF SENTINEL-2 FSCOG AND IMS SNOW 

COVER PRODUCTS 
The snow cover dynamics calculated from both the snow cover products show similar results 
of those observed in the validation in section 6.1. Figure 13 illustrates how IMS overestimates 
the SCD and FSCOG underestimates SCD compared to SMHI ground truth data. The forward 
fill method used to extend the FSCOG snow cover product only extends the current snow cover 
state until a new acquisition is available. This is a very inaccurate interpolation since it does 
not use any input as how the snow state changes between acquisitions. FSCOG have more than 
double the difference in SCD compared to SMHI than IMS, 19.4 and 7.4 days on average for 
the snow products. This speaks for the temporal resolution being a more important factor in 
determining SCD. Therefore, achieving better results for IMS and combining the two 
products to improve snow cover dynamics measurements, as suggested by Rittger et al. 
(2021), is the reason behind their work. 
 
The disadvantages of the low temporal resolution and the effect of polar darkness for FSCOG 
are illustrated in Figure 14. For several of the stations and snow seasons examined the SCOD 
is in February or January. This is far off from the actual SCOD from SMHI data in November. 
The low temporal resolution and high ratios of cloud cover can result in no snow cover being 
detected before the polar darkness. This appears to be more common at lower latitudes where 
the SCOD occurs later in the year.  That can be the reason for the large error in SCOD and 
SCED for FSCOG compared to SMHI data. The difference in SCOD and SCED compared to 
the SMHI data was more than twice the length for FSCOG than IMS, 21.1 and 10.3 days on 
average. 
 
IMS coarse spatial resolution is the reason why there are only 8 SCOD and SCED calculated 
compared to 10 for the FSCOG product. As some stations lie close to waterbodies they are 
consistently incorrectly classified as ice or water. The FSCOG product don’t have this problem 
since it has higher spatial resolution and can therefore detect snow closer to water. This 
emphasizes the need of higher spatial resolution in some applications. 
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6.4 PART 2: POINT BASED VALIDATION OF V2 SNOW COVER PRODUCT 
One advantage of the V2 product compared to the FSCOG product are the total number of 
comparisons made to the SMHI ground truth data. This is a because of the daily temporal 
resolution that the spatiotemporal fusion algorithm can achieve by utilizing the favorable 
temporal attributes of the IMS dataset. In total 26 809 comparisons were made compared to 
the 1 730 of the FSCOG product as shown in Figure 16 and Table 5. This benefits most 
applications acquiring snow cover maps since it gives more frequently updated data and can 
in turn result in more accurate hydrological models (Dong 2018). 
 
Figure 16 and Table 7 shows that the accuracy for the v2 product is lower than that of the 
original snow cover products. The V2 products tends to underestimate like the FSCOG 
product, showing the characteristics being carried over from the product in the fusion. The 
higher spatial resolution of the V2 must be considered when assessing the overall 
performance. For snow cover classification in areas that have high spatial variability it can be 
beneficial to have snow maps with high spatial resolution to capture the variations due to  
wind drift for example (Mott et al. 2018). The accuracy of the V2 product can be inferior 
because of the effect that the water mask in IMS has. The fusion algorithm does not consider 
waterbodies in the IMS product and can therefore include water or ice in the new V2 product 
when the gap limit is surpassed. This was done since FSCOG doesn’t have values for water. 
The individual confusion matrixes for V2 in Appendix 9.1.3 show that some stations have 
very low TP scores. These stations are the ones excluded from the validation of the IMS 
product because of consistent classification as water. This could not be done for the V2 
product since it doesn’t have a value for water. An improvement to the spatiotemporal fusion 
algorithm presented in this work could be to add a way of removing IMS water or ice pixels 
in the fusion so they are not included in the V2 product. 
 
6.5 PART 2: DATA AVAILABILITY OF V2 SNOW COVER PRODUCT 
The data availability analysis showed that the V2 product has more snow cover data available. 
This is the result of combining the high temporal properties of the IMS dataset. Doing this 
creates a dataset which allows for continuous monitoring of the snowpack. The difference is 
especially noticeable during the mid-winter months when there also is polar darkness. This 
can be because of the gap limit in the algorithm being exceeded and IMS is instead used 
exclusively during this period. These months then don’t achieve the high spatial resolution 
that the FSCOG product contributes with during the rest of the year. As the gap limit is 
increased the total pixelwise frequency of cloud presence goes from 21.5% for the V2 dataset 
to 30.7% for 5-day gap limit. The properties of the product from the fusion algorithm are 
similar to the FSCOG product when the gap limit is increased since there are less days when 
the IMS data is used. With an infinite gap limit the product from the fusion algorithm won’t 
have any IMS data in it. 
 
When looking at individual stations in Figure 18 the impact of cloud cover is also less 
compared to the original FSCOG product. There is also seasonal variation between the years 
that are reflected in more cloud cover for example in 2021. This shows that reducing the 
effect of cloud cover can be especially important in some seasons when cloud cover is 
especially high. The distribution of available data is more consistent than the FSCOG product. 
Figure 15 shows that each month has around 8% of the available data in the V2 snow cover 
product. The inclusion of the IMS product contributes to filling in the data gaps for the 
months where the FSCOG has no data because of polar night. That is the benefit of the passive 
microwave sensors that IMS uses to detect snow cover (Helfrich et al. 2018). This has 
previously been seen as a key benefit of using passive microwave remote sensing for snow 
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cover mapping (Dietz et al. 2012a; Dong 2018). Here it is utilized in combination with the 
high spatial resolution of optical sensors to mitigate the negative impact of cloud cover. This 
has been previously proposed for general spatiotemporal fusion algorithms not specifically 
focusing on snow cover mapping by Belgiu & Stein (2019). 
 
6.6 PART 2: SNOW COVER DYNAMICS OF V2 SNOW COVER PRODUCT 
The V2 snow cover product saw improvements in characterizing both snow season duration 
(SCOD and SCED) and SCD compared to the high-resolution Sentinel-2 snow cover product. 
Figure 19 shows that the V2 product generally overestimated the SCD compared to the SMHI 
ground truth data. It shows similar characteristics to the those of the SCD for the IMS 
product. The difference to the SMHI data was reduced by 6.6 days to 12.8 days approaching 
the value of the IMS product of 7.4 days. This shows the benefit of fusing the high temporal 
resolution IMS product with the FSCOG product. SCD need continuous data to accurately 
detect rapid changes in snow accumulation and snow melting which occurs during periods 
outside of the polar night. During the polar night it is more important to have sensors that are 
capable to gather data regardless of how much light is present. Similar to the approach by 
Esmaeelzadeh et al. (2024), which integrates cloud-penetrating Sentinel-1 data with optical 
Sentinel-2 images for more accurate snow water content mapping, this study's method 
combines different products. This combination aims to achieve enhanced results in measuring 
snow cover dynamics in a comparable manner. 
 
The SCOD and SCED was improved compared to the original FSCOG product as seen in 
Figure 20. The difference to the SMHI data was 10.3 days which is the same as the IMS data. 
Important to note is that V2 achieved this accuracy while having a snow cover data of higher 
spatial resolution on days in proximity to FSCOG data, that will say within the gap limit in the 
fusion algorithm set by the user. The V2 product did not have the same problem as FSCOG had 
with SCOD in January and February. By using the IMS data there were no gaps long enough 
in the data that resulted in missing the start of the snow season. 
 
The spatiotemporal fusion algorithm succeeds in achieving better results in the snow cover 
dynamics measured in this study. A higher temporal and spatial resolution than the individual 
snow cover products were also attained for the V2 data. This indicates that spatiotemporal 
fusion of optical and microwave-based snow cover products is suitable for improving snow 
cover mapping. 
 
6.7 PART 2: COMPARISON OF V2 SNOW COVER PRODUCT TO ORIGINAL 

SENTINEL-2 FSCOG AND IMS SNOW COVER PRODUCTS 
The example from the spatiotemporal fusion in Figure 21 show how two Sentinel-2 FSCOG 
images are fused to create the V2 product. The scenes are from the peak of snow melt season 
when big changes occur in the distribution of the snowpack. This time was chosen to illustrate 
clearly what happens in the algorithm. During mid-winter the snowpack is consistent and no 
changes in SCE occur. The new V2 product is a fusion of the two FSCOG products as 
mentioned before, this can be seen in different parts of the picture. The difference mask 
shown in Figure 22 indicates where the change in the snowpack between the two dates 
occurred. These parts are therefore retrieved from the second FSCOG image. Where now 
change occurred are retrieved from the first FSCOG image. 
 
The algorithm makes a good job of not copying cloud cover in the fusion process. The clouds 
in the second FSCOG image are not copied in the fusion since the algorithm filters out those. In 
the case where clouds are present in both the FSCOG images no information about the 
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snowpack exists for any of the images and cloud can’t be filtered out. An improvement might 
be made in the algorithm to use the IMS data for these pixels when this happens. That can 
also be made for images with no-data pixels. Some of the FSCOG tiles have areas of no-data 
because of the acquisition path of the Sentinel-2 satellite. Utilizing the IMS data in these cases 
could increase the available snow cover data for the V2 product.  
 
With interval between the two acquisitions being 3 days there can be weather events that have 
happened that we do not see in the FSCOG images. If snow had fallen on one of the days and 
melted before the new FSCOG image the V2 image between the two FSCOG images will not be 
able to reflect that. That is why the gap limit was introduced in the algorithm to control how 
long of a gap between FSCOG acquisitions is tolerated. To long of a gap increases the risk of 
missing changes in the snow cover from melting or new snow fall. This could be mitigated by 
having the difference mask from the IMS data track if the difference is positive (snow cover 
increased) or negative (snow cover melted). Currently the difference mask only tracks if a 
change occurred and not the type of change.
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7 CONCLUSIONS 
 
The results from the validation of the snow cover products Sentinel-2 FSCOG and IMS show 
that both products have high accuracies with more than 90% percent correct classifications 
when compared to the ground truth data SMHI consisting of in situ measurements. IMS had 
higher recall meaning that it was less likely to miss snow cover compared to Sentinel-2 
FSCOG. On the other hand, Sentinel-2 FSCOG was more accurate at predicting bare ground, 
avoiding false positives when no snow was present. Sentinel-2 FSCOG therefore tends to 
underestimate the snow cover whilst IMS tends to overestimate the snow cover. This 
difference is important to consider when using the snow cover products for applications like 
hydrological modelling and analysis of snow cover dynamics. 
 
The analysis of the cloud cover showed that about 40% the data from the Sentinel-2 FSCOG 
snow cover product was unusable because of cloud cover. A seasonal variation with the winter 
months having more cloud cover was observed. Additionally the western and more 
mountainous parts had more cloud cover. This limits the availability of the snow cover data of 
the already low temporal resolution Sentinel-2 FSCOG snow cover product. 
 
Through a spatiotemporal fusion algorithm of the two snow cover products a new dataset was 
generated named V2. The purpose of the spatiotemporal fusion was to combine the best 
attributes of each dataset, the high temporal resolution of IMS and the high spatial resolution 
of Sentinel-2 FSCOG. As a result of the spatiotemporal fusion algorithm the V2 product has a 
daily temporal resolution and maintained the high spatial resolution from the FSCOG product. 
The results from the data availability analysis of the V2 product showed a reduction of cloud 
pixels with 21.5% cloud cover with a gap limit of 2 days and 30.7% with a gap limit of 5 
days. This shows a higher temporal resolution and a reduction of unusable data allowing 
continuous monitoring of the snow cover at high spatial resolution.  
 
The snow cover dynamics from the V2 product showed improvements in the studied metrics 
snow cover days, snow cover onset and snow cover end day compared to the original 
Sentinel-2 FSCOG product. The new V2 product did not surpass the IMS product in the studied 
snow cover metrics. The average difference in snow cover days between the V2 and SMHI 
data was 12.8 days which is an improvement to the 19.4 days of the Sentinel-2 FSCOG product 
and closer to the 7.4 days of the IMS product. For the SCOD and SCED the difference 
between the V2 and SMHI data was 10.3 days, the same as the IMS product and an 
improvement compared to the 21.1 days of Sentinel-2 FSCOG. This suggests that combining 
the optical Sentinel-2 FSCOG snow cover product with the IMS snow cover product, which 
uses passive microwave and other sources, through spatiotemporal fusion could enhance snow 
cover mapping. This approach can be useful when improved temporal and spatial resolution 
can be prioritized over accuracy. 
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9 APPENDIX 
9.1 INDIVIDUAL STATION SNOW COVER PRODUCT CONFUSION MATRIX 
9.1.1 FSCOG 

 
Figure 23: Confusion matrix of Sentinel-2 FSCOG snow product for individual stations evaluated on SMHI 
ground truth data. Values normalized by number of acquisitions per snow product. 
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Figure 24: Confusion matrix of Sentinel-2 FSCOG snow product for individual stations evaluated on SMHI 
ground truth data. Values normalized by number of acquisitions per snow product. 
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Figure 25: Confusion matrix of Sentinel-2 FSCOG snow product for individual stations evaluated on SMHI 
ground truth data. Values normalized by number of acquisitions per snow product. 
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9.1.2 IMS 

 
Figure 26: Confusion matrix of IMS snow product for individual stations evaluated on SMHI ground truth data. 
Values normalized by number of acquisitions per snow product. 
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Figure 27: Confusion matrix of IMS snow product for individual stations evaluated on SMHI ground truth data. 
Values normalized by number of acquisitions per snow product. 



 

 
56  

9.1.3 V2 

 
Figure 28: Confusion matrix of V2 snow product for individual stations evaluated against SMHI ground truth 
data. Values normalized by number of acquisitions per snow product. 
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Figure 29: Confusion matrix of V2 snow product for individual stations evaluated on SMHI ground truth data. 
Values normalized by number of acquisitions per snow product. 
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Figure 30: Confusion matrix of V2 snow product for individual stations evaluated on SMHI ground truth data. 
Values normalized by number of acquisitions per snow product. 


