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ABSTRACT

Explorative Multivariate data Analysis of the Klinthagen limestone quarry data
Linus Bergfors

The existing quarry planning at Klinthagen is rough, which provides an opportunity to
introduce new exciting methods to improve the quarry gain and efficiency. Nordkalk
AB, active at Klinthagen, wishes to start a new quarry at a nearby location. To exploit
future quarries in an efficient manner and ensure production quality, multivariate
statistics may help gather important information.

In this thesis the possibilities of the multivariate statistical approaches of Principal
Component Analysis (PCA) and Partial Least Squares (PLS) regression were evaluated
on the Klinthagen bore data. PCA data were spatially interpolated by Kriging, which
also was evaluated and compared to IDW interpolation.

Principal component analysis supplied an overview of the relations between the
variables, but also visualised the problems involved when linking geophysical data to
geochemical data and the inaccuracy introduced by lacking data quality.

The PLS regression further emphasised the geochemical-geophysical problems, but
also showed good precision when applied to strictly geochemical data.

Spatial interpolation by Kriging did not result in significantly better approximations
than the less complex control interpolation by IDW.

In order to improve the information content of the data when modelled by PCA, a
more discrete sampling method would be advisable. The data quality may cause trouble,
though with sample technique of today it was considered to be of less consequence.

Faced with a single geophysical component to be predicted from chemical variables
further geophysical data need to complement existing data to achieve satisfying PLS
models.

The stratified rock composure caused trouble when spatially interpolated. Further
investigations should be performed to develop more suitable interpolation techniques.

Keywords: Multivariate analysis, interpolation, PCA, principal component analysis,
PLS, projection to latent structures, partial least squares, Limestone quarry, Klinthagen,
Kriging.
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REFERAT

Utforskande multivariat analys av Klinthagentiiktens projekteringsdata
Linus Bergfors

Brytningsplaneringen vid kalkbrottet Klinthagen 4r idag mycket grov. Detta 6ppnar for
mojligheten att utveckla nya metoder for att effektivisera och forbéttra arbetet vid
brottet. Nordkalk AB som bedriver brytningen i Klinthagen vill utoka sin verksamhet
med ett nytt brott i samma omrade av Gotland. Multivariat analys av prospekteringsdata
kan bidra till att samla nyttig information, som forbéttrar exploateringen av framtida
objekt.

Genom analys av borrhdlsdata fran Klinthagen utvirderades i detta examensarbete
mojligheterna med de multivariata metoderna PCA (principialkomponentsanalys) och
PLS regression (partiell minstakvadrat- anpassning). Data fran PCA modeller
interpolerades rumsligt med Krigingmetoden, vilken jamfordes med inverterade
distansmetoden (IDW).

Principialkomponentanalysen formedlade en 6verblick over datat. Genom detta blev
problematiken da kemiska och fysikaliska data ska sammanlénkas tydlig. Samtidigt
belystes dven vikten av god datakvalitet.

PLS regressionen visade goda resultat da enbart kemiska data anvéndes.
Svarigheterna att koppla ihop kemiska och fysikaliska data fortydligades ytterligare
under denna del av analysen.

Vid jamforelsen mellan Kriging och IDW interpolation av Klinthagendatat kunde
ingen egentlig fordel tillskrivas den mer komplexa Krigingmetoden.

Metoderna PCA och PLS kan sidgas fungera for geokemiska data, men for att
forbéttra framtida analyser bor en mer diskret datainsamlingsmetod tillimpas. Den
periodvis ldga datakvaliteten, formodligen beroende pa den ldnga insamlingsperioden
orsakar dven den vissa problem.

Det krdvs mer dn enbart geokemiska data da den fysikaliska parametern, termiskt
sonderfall ska predikteras med PLS regression. Kompletterande fysikaliska data som till
exempel kornstorlek kan vara lampligt.

Eftersom berget har avsatts 1 lager med tvéra fordndringar av kalkstenstyp blir
interpolationen svar. Vidare undersokningar kravs for att etablera goda
interpolationsmetoder pa grund av kalkstenens komplexa struktur.

Nyckelord: Multivariat analys, interpolation, PCA, principalkomponentsanalys, PLS,

projektion till latenta strukturer, partiell minstakvadrat- anpassning, Kalkbrott,
Klinthagen, Kriging.
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POPULARVETENSKAPLIG SAMMAFATTNING

Utforskande multivariat analys av Klinthagentiiktens projekteringsdata
Linus Bergfors

Nira Storugns pa norra Gotland ligger kalkbrottet Klinthagen, som drivs av Nordkalk
AB. Diér bryts och forddlas en rad olika kalkstensprodukter. Dessa anvidnds framforallt 1
olika industriella processer. Den viktigaste anvéndaren é&r stalindustrin, som anvénder
kalksten 1 sin forddlingsprocess. Klinthagens kalksten har visat sig vara mycket vél
lampad for detta andamal. Tyvirr borjar tillgdngarna av kalksten 1 Klinthagen att ta slut
och man riknar med att bryta den sista stenen i brottet under 2012. Pa grund av detta
har Nordkalk ansokt om att fa 6ppna ett nytt kalkbrott i samma omrade pa Gotland.

For att i framtiden utnyttja kalkbrottstdkter pa ett battre och effektivare sitt finns ett
behov att utveckla nya metoder for planering och kartldggning. Brytningen och
planering av nyttjandet av Klinthagentédkten &r oprecis och grov, vilket lamnar stora
mojligheter for forbéttringar.

Kalksten bestar av gamla korallrev och andra vattenlevande organismer som sjoliljor,
och svampdjur. Klinthagens kalksten bildades for mer &n 400 miljoner ar sedan, da
revet 1ag nagonstans 1 ndrheten av ekvatorn. Berget har sedan genom rorelser 1
landmassorna forflyttats och pressats upp till den plats det &r nu. Eftersom kalkstenen
bildas pa ett sa speciellt sitt far den en lagerstruktur som beror pa vilken typ av
organsim som ligger till grund f6r det lagret.

I denna uppsats utvirderas mojligheterna med de multivariata analysmetoderna PCA
(Principal Component Analysis) och PLS (Partial Least Squares) da de anvédnds pa data
frén ett kalkbrott (Klinthagen). Av sérskilt intresse for Nordkalk dr om kalkens
temperaturkéinslighet och svavelinnehall kan forutspés. For att vidareutveckla
undersokningen genomfordes dven ett forsok att berdkna hur kalkstenen foérédndras
mellan provtagningspunkterna med hjdlp av en metod kallad Kriging.

PCA ir en statistisk metod for att géra data som innehdller minga variabler mer
overskadlig. Analysen ger information om trender och avvikelser i materialet. Dessutom
beskriver metoden hur de olika variablerna paverkar varandra.

PLS édr en utveckling av den teknik som anvédnds i PCA men informationen om hur
variablerna paverkar varandra anvinds for att skapa samband, som kan forutspa hur en
eller flera variabler kommer att bete sig.

Da Kriging anvénds for att uppskatta hur berget fordndras mellan borrhdlen analyseras
forst hur langt bort fran en punkt omgivningen paverkas av dess virde. Darefter anviands
informationen for att, utifran de punkter dér data finns, berdkna vad som kan finnas
mellan dessa punkter.

Analyserna med PCA visade att metoden fungerar bra for den hér typen av material,
men flera olika omsténdigheter forsvarade analysen. Bland annat var datakvaliteten
vildigt varierande och den komplicerade bergstrukturen gjorde analyserna svara att
tolka. For att forbattra framtida analyser bor provtagningsmetoden forédndras nagot for
att fa ett mer lattolkat material.
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Det fungerade bra att med PLS f6rutspa svavelinnehall i kalkstenen, ddremot gick det
inte att forutspa temperaturkénslighet. For att ta fram modeller, som klarar detta maste
det befintliga datamaterialet kompletteras med ytterligare information. Delar av
resultaten tyder pa att kornstorlek och stenens sméskaliga struktur till stor del paverkar
dess motstdndskraft mot hoga temperaturer.

Analysen av berdkningarna av bergets utseende mellan provtagningspunkterna visade
att det med det anvénda datamaterialet inte finns nagon fordel med att anvidnda sig av
Kriging. Aterigen var det de komplicerade variationerna i kalkstenen som bidrog till
svérigheterna. P4 grund av lagerstrukturen i berget kan fordndringar ske mycket snabbt,
vilket dr svart att forutse da provtagningarna ar gjorda pa en mycket grovre skala. Om
Kriging ska anvédndas maste noggranna métningar for hur kalkens vérden varierar
genomforas. Fragan om det dr lampligt att anvinda Kriging bor behandlas noga innan
forsoken paborjas.
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1 INTRODUCTION

The limestone products quarried at Klinthagen, Sweden are used in a wide variety of
processes, which all demand different characteristics. To meet the demand, an industrial
exploit of the resource has been developed since the start in 1987 (Karlsson, 2008). In
year 2004 about 3.2 million tons of limestone products were produced at Klinthagen
(Karlsson, 2008). However, since the resources are reaching its end a decrease in
productivity has been inflicted at the location, and the site is expected to be fully
exploited in 2012 (Nordkalk, 2010a). Nordkalk is therefore presently applying for
permission to start a new quarry, Bunge, close to Klinthagen.

The Limestone at Klinthagen is a heterogenic sedimentary rock type, which originates
from coral reefs and other sea-living life forms living more than 400 million years ago.
This has caused the quarry, of about 180 hectares, to be constituted by lens-like reef
bodies reaching up to 200 meters in length, 70 meters in width and 20 meters in depth.
Every reef body is by itself composed by layers of rock originated from different life-
forms, which are also mixed with clay materials and eroded reef fragments. To view the
list with limestone types represented at Klinthagen, see Appendix IV. The information
in this paragraph was obtained from Nordkalk (2010b).

During a visit at the quarry in the middle of November the stratified nature of the rock
was noticed, which also is visible in the picture (Figure 1).

Figure 1 Picture overlooking a part of the Klinthagen quarry, notice the stratified rock composure. The
rock wall is about 15 meters in height.

The Klinthagen limestone is known to be a product of high quality with low levels of
contaminants, such as sulphur, and a low tendency to break at high temperatures, which
is rather rare and of great value to the iron and steel industry. If the areas of high quality
may be mapped and therefore more efficiently extracted it could reduce the impact on
the environment at future locations and increase quarry efficiency.

Using multivariate statistics to analyse the data from the Klinthagen quarry valuable
information to improve future quarry operation may be found. Multivariate statistical

analysis is mainly used when large datasets containing many variables are evaluated.

The Klinthagen quarry location may be viewed in Figure 2.
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Figure 2 Klinthagen limestone quarry at Gotland. The dotted line represents the area not yet quarried
(Karlsson, 2008) Printed with permission from Lantmaéteriverket (I 2010/0058).

There are several studies using multivariate methods principal component analysis
(PCA) and in some cases partial least square projection to latent structures (PLS) on
geological data. Of special interest are those studies, which contemplate the chemical
structures and spatial decomposition of bedrock. Esbensen et al. (1987) presented a
study linking chemical data from overburden to geophysical data as density, magnetic
susceptibility etc. They used PCA in the initial steps of the analysis, moving on with
PLS to predict the geophysical characteristics from the chemical structures of the
overburden, followed by Kriging interpolation of the results to obtain a map showing
the spatial distribution of predicted geophysics in the project area.

Jimenez-Espinosa et al. (1993) used PCA to analyse the soil chemistry data of an area
located in North-Western Spain. They let the first principal component represent six
highly correlated components as a single variable. Jimenez-Espinosa then derived
spatial images through Kriging analysis to visualise how this new variable was
distributed in the area as to identify anomalties.

In southern Portugal a quarry used for cement production, was examined for quality by
a combination of multivariate and image analysis, see Almeida et al. (2004). Different
ratios of chemical components are used by the company active in the area as quality
parameters; this was the starting point of the analysis. Almeida et al. used data from a
set of sparse bores, creating a large block model. They divided the area into smaller
blocks, which characteristics were then estimated through PCA and a simulating
routine; this resulting in a set of images visualising the distribution of the variables. The
images were analysed according to the “quality parameters” to identify interesting sub-
areas in the quarry (Almeida et al. 2004).



1.1

PURPOSE

The main purpose of this thesis is to evaluate the possibilities of multivariate
statistical analysis (PCA & PLS) and suggest improvements in order to enhance
its applicability when applied to geochemical data.

Investigate the possibility of predicting thermal disintegration index or sulphur
contents from geochemical data.

. Evaluate the spatial interpolation method Kriging, when applied to PCA data

from Klinthagen.

. Present a documentation of the multivariate techniques; PCA and PLS, and the

theory of spatial interpolation by Kriging.



2 MULTIVARIATE ANALYSIS

Multivariate analysis is a powerful tool used to deal with large datasets. The refined
measuring techniques of today and possibilities to store large datasets often render
datasets of immense magnitude. A vast amount of variables and objects in a dataset may
make it impossible to distinguish trends, groups, outliers etc. Multivariate analysis
consists of a variety of different methods of handling large matrix problems. In general
all the methods subordinated to multivariate analysis are designed to simplify the
interpretation of the data. However, depending on the objective of the analysis the
methods used have to be chosen carefully.

The objectives where multivariate techniques are most commonly used are described as
(Johnson, 1992):

Data reduction or structural simplification
Sorting and grouping data

Variable dependency investigation
Prediction

Constructing and testing hypothesis

The techniques of multivariate analysis have been used in many different fields of
science such as physics, chemistry, medicine and social studies but also in economics
and business studies (Johnson, 1992). Most interesting for this thesis however is its
prior use in mining and prospecting (Eriksson, 2001).

2.1 MULTIVARIATE NORMAL DISTRIBUTION

Most multivariate analysing techniques are based on the assumption of a multivariate
normal distribution of the dataset (Johnson, 1992). In this thesis the main analysing
methods (PCA & PLS) are based on projections, which are not restricted by the
distribution of the data (Johnson, 1992). However, if the data is approximately normally
distributed it may simplify the analysing process. To have an understanding of the data
distribution prior to modelling can be valuable when making decision during the
analysis; therefore it is a basic step of data analysis to determine the distribution.

In the univariate case, the samples of one variable are studied to evaluate the probability
of a certain outcome if a new sample was to be taken. The probability is calculated from
the normal distribution function, which forms a bell-shaped curve with maximum peak
at the mean of the variable. Depending on the standard deviation of the samples the
curve will be more or less stretched towards the edges. The area under the curve
describes the probability of a sample to be within a certain interval. The normal
distribution is given by:

F(x) = —— = e (el —00< X <0 2.1)
2o

where o is the standard deviation and y is the mean.

In the multivariate case the probability is described by the multivariable normal
distribution function (2.2), which is analogous with the univariate function (Johnson,



1992). The function will describe a p-dimensional surface (Figure 3), where p is the
number of variables included. To evaluate the probability, the volume under the surface
over a region formed by intervals has to be determined (Johnson, 1992). Analogous to
the univariate case the standard deviations and the covariance affect the shape of the
surface greatly. When the dimension exceeds two, p > 2, it is hard to obtain a
satisfactory graphical illustration. The multivariate normal distribution is given by:

£(X) = 1 o (X8 T (x-p)2 2.2)

(272_)1,/2 |z|1/2

where p is the dimension, X is a matrix with p variables, X is the covariance matrix and
1 is a vector of expected values for each variable in X.

Figure 3 A graphical representation of a two dimensional normal distribution, where the variables
variation is the same and no correlation occur. In the top left corner the distribution is shown as contours
from above.

If it is concluded that a dataset has a multivariate normal distribution the following
stands true (Johnson, 1992):

e Linear combinations of components of X are normally distributed
e All subsets of the components of X have a (multivariate) normal distribution

e Zero covariance implies that the corresponding components are independently
distributed

e The conditional distributions of components are (multivariate) normal

2.2 MULTIVARIATE PROJECTION METHODS

Projection techniques deal with three aspects of the analysis: data overview,
classification and discrimination and regression modelling (Eriksson, 2001). The
analysing procedure often contains all of these three aspects, starting with an overview,



moving on with classification and discrimination and finally approximating a model
predicting one or more of the variables involved (Eriksson, 2001).

Principal component analysis (PCA) and partial least square projection to latent
structure (PLS) are both multivariate projection methods.

PCA applied to the entire dataset will provide an overview of the variables and
observations to be analysed. From this overview it is possible to extract information
about the relations between observations, groups of observations and deviating
observations. Other important information, which PCA may reveal are trends and
shifting in the data. The overview also contains information on the correlation of the
variables and how the variables are connected to the observations.

If the initial PCA shows distinguishable groupings in the data, this stresses the question
of classifying observations. It may be necessary to perform additional PCA for each
group separately in order to obtain further knowledge about groups and their
characteristics (Eriksson, 2001). These new PCA-models or class-models provide the
possibility to classify new observations. However, should a new observation prove not
to fit any of the established classes, this becomes an interesting sample and will need to
be examined more closely.

The PLS technique may make it possible to achieve a model able to predict a certain set
of variables as responses to a set of new observations, which is desired. This is often the
main objective of the data analysis. The model provides the opportunity to study how
the observations affect the responses and how the responses correlate (Eriksson, 2001).
When applying PLS to a dataset, it is important to separate causality from correlation. A
causative relationship between observation and response means that a change in the
observed variable causes the response to change, whereas for a correlation the change in
the observed variable and the response may in fact be caused by another unknown
variable and the observation and response are simply mutually affected.

23 PRINCIPAL COMPONENT ANALYSIS

Principal component analysis mainly tries to represent high dimensional data in a space
with reduced dimensions (Jolliffe, 1986). The method could be described by a rotation
of the axes as to find new variables, which represent the variability in a least square
sense in the data to the highest degree (Eriksson, 2001). The new variables are called
principal components and are calculated so that the first component represents the most
variance and the second represent the second most variance and so on (Jolliffe, 1986).

2.3.1 Computing Principal Components

Principal components may be calculated from either the covariance matrix or the
correlation matrix depending on the problem, however the manner of determining are
the same. Below, the principals for calculating the components from the covariance
matrix are described.

Consider a matrix X with n observations of p variables. The principal components are
defined by seeking the linear combinations, which maximises the variance (Johnson,
1992). This is done by studying the sample covariance matrix, S, by respect to
eigenvalues and eigenvectors (Johnson, 1992). The sample covariance matrix is
calculated by:



S= LX'X (2.3)
n—1

where 7 is the number of observations.

The eigenvalues of the sample covariance matrix represent the variation in the direction
of the corresponding eigenvector (Johnson, 1992). Since the matrices are normally large
the eigenvalues could be calculated with the power method or the QL- algorithm
(Jolliffe, 1986). When the eigenvalues have been calculated they may be ordered by
decreasing number. The first principal component is chosen as the eigenvector
corresponding to the largest eigenvalue.

y, =¢,X (2.4)

where y; is the first principal component, e, is the transpose of the normalised
eigenvector corresponding to the largest eigenvector and X is sample data matrix. The
values of y; are called scores and represent the observations of X projected onto the
new axis with the coefficients of e;. It should be noted that the principal components are
to be orthogonal and therefore there should not be any covariance between the
components (Johnson, 1992). Obvious from the calculation method PCA is sensitive to
scaling, hence the sample data matrix is often centered and normalised before these
operations, that is to say the means are subtracted from the observations and vectors are
adjusted to be of the same length (Eriksson, 2001). The normalisation is often done by
dividing the vector by its standard deviation (Eriksson, 2001).

If the procedure is followed through to the last component all of the variance in X will
be accounted for (Johnson, 1992). The eigenvectors will form a matrix A containing the
directions of all the orthogonal principal components. The scores of the observations for
all the components may be expressed as (Jolliffe, 1986):

Y =XA (2.5)

Another, more direct approach for calculating the principal components is obtained
through singular value decomposition (Jolliffe, 1986). This states that the sample
matrix, X, can be written as

X = ULA’ (2.6)

The decomposition is based on finding eigenvalues and eigenvectors to the matrices
X’X and XX’ (Golub, 1965). The columns of U consist of the eigenvectors of XX’ and
the columns of A are, as before, the eigenvectors of X’X (Golub, 1965). Considering X
being a matrix with » observations and p variables implies that the dimensions of U and
A should be (n x n) and (p X p) respectively. The matrix L is diagonal with the singular
values of X as elements. The singular values are the square roots of eigenvalues to
either X’X or XX’ (Golub, 1965). The elements of L are normally ordered as decreasing
from the left and the dimensions are (n x p). The sample matrix X is often rectangular,
either more observations then variables or vice versa, therefore follows that L will be
filled with zeroes to reach desired dimensions (Golub, 1965).



The column vectors of U and A are determined under the constraint of orthonormality,
which implies:

u'u=1I (2.7)
A'A=1 (2.8)

Equation (2.6) together with (2.8), provides the opportunity to multiply A from the
right. By this follows that

XA = UL (2.9)
Comparing this with the result in (2.5) it is obtained that:
Y =UL (2.10)

It is now possible to see that the singular value decomposition performed in this manner
provides both the coefficients of the principal components in the matrix A and the
scores projected to the components in the matrix UL. To link the results to the earlier
discussion of principal components retrieved from the sample covariance matrix, it
should be noticed that the singular values of X is in fact the square roots of the
eigenvalues of the sample covariance matrix multiplied by (n-1) (Jolliffe, 1986).

2.3.2 Geometrics of PCA

When faced with a sample matrix X with » observations and p variables, the

observations form a swarm of points in a p-dimensional space (Figure 4) (Eriksson,
2001).

> ¥

Figure 4 Point swarm in three dimensional space.



The first steps of the PCA will cover the scaling and centering of the points, which will
standardise the impact of each variable variance and move the origin of the axes to the
mean value. These steps will then be followed by the computing of the first principal
component (PC) and the projections of the observations, the scores. The first PC is, as
earlier explained, an axis in the direction representing the variance of the data to the
highest degree (Figure 5).

PC2

PC1

v
4

Figure 5 Centered point swarm with two principal components in three a dimensional space.

However, the scores of the first PC alone are often not enough to gather a sufficient
understanding of the data, therefore a second PC is inserted in the data swarm, which
represents the second highest degree of variance. This is sometimes continued by a third
and fourth PC but the fraction of variance described decreases for each PC calculated,
thus also the correlation to other variables. Normally, the scores are viewed in 2-
dimensional plot over the first PC and any of the additional components. This can
geometrically be described as inserting a plane into the point swarm, and projecting the
observations onto it (Figure 6 & Figure 7).



Figure 6 Plane inserted in the point swarm created by the PCs.

X3

Projection of observation

~
>
\ X

Projection of observation

2

X1

Figure 7 Projection of observation onto the plane.
The plane with projected observations is called a score plot, (Figure 8). The score plot

reveals information about the observations such as groups, trends and outliers; it is often
desired however, to relate the scores to the original variables.
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Figure 8 Score plot showing the projected observations, where the circle represents the hotelling’s 95
percent confidence interval.

A way of viewing these relations is to examine how the plane is inserted into the
original p-dimensional space, which is revealed by studying the coefficients of the
principal components (Esbensen et al., 1998). The coefficients are called loadings,
simply because they show how strongly a variable influences the PC. Geometrically the
loadings are defined as cosine of the angle, a, from the variable axis to the PC (Figure
9) (Eriksson, 2001).
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Figure 9 Angles from variables to first PC; showing how the component is inserted in a three dimesional
space.

The loadings of two components are displayed in a loading plot (Figure 10), showing
the variable correlation and how they affect the PCs. Variables far from the origin have
a greater impact on the PCs opposed to those closer to origin. Variables close to each
other may be positively correlated, and those on opposite sides of the origin may be
negatively correlated (Esbensen et al., 1998).

Comparing the score plot with the loading plot is very effective since they complement
each other. The directions in the plots are the same, which implies that if observations in
the score plot are situated close to the location of a variable in the loading plot it is
likely that these observations are affected by this variable (Eriksson, 2001).
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Figure 10 Loading plot showing variables relations.

2.3.3 The PC-model
A PC-model is an attempt to describe the variance of a sample data matrix X in an
effective and simple way. It should be noticed though that reducing the dimensions
comes with a cost of lost information. The losses are described as noise in the matrix, E.
Assuming the data matrix X has been centered by subtraction of mean values and
normalised; the resulting data matrix is denoted as X.. The data may then be written as:
X =E (2.11)

where E is the noise, which in this case accounts for the entire variance of the data.
Equation (2.11) is sometimes referred to as the zero component model.

Computing the first PC will provide a vector of scores, t;, and a vector of loadings, p;.
The model can then be described as (Esbensen et al., 1998):

X,. =t -p;+E (2.12)

where E; is the new noise matrix, which in comparison to (2.11) has reduced by the
variance accounted for by the first PC.

The model work continues by adding one PC after another. However, for each PC
added the fraction of variance explained by the new PC decreases. The gain of adding a
PC should be considered as it brings with it the cost of a more complex model. With the
final number of PCs decided the model may be expressed as:
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X, =T-P'+E (2.13)

where T is formed by the score vectors, tj, and P consists of the loading vectors, p;. The
index, 7, ranges from 1 to the number of PC decided upon.

Since, the PCs do not account for all the variance in the data; the matrix E represents an
important and informative part of the model, which reveals how the observations and
variable deviate from the model. Geometrically the noise is the distance from an
observation to the plane spanned by the PCs (Figure 11).

— Residual: distance to plane
(noise)

v

Figure 11 The noise (residuals) is the distances from the observations to the projections on the plane.

These distances are called residuals and are the content of E. By plotting how each
observation deviates from the model (Figure 12), it may be possible to identify outliers
not spotted in the score plot (Eriksson, 2001). It may also reveal if there are shifts in the
data (Eriksson, 2001).
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Figure 12 The observation residual plot shows the distance from the observation to the model.

Furthermore, plotting the residuals of a certain variable provides information on how
well that variable is explained by the model (Eriksson, 2001). Often this is plotted in a
cumulative manner (Figure 13), by adding the fraction of the residuals accounted for by
a principal component to the next (Eriksson, 2001). In this way it is possible to
understand which variables and to what extent they are explained by each PC.
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Figure 13 Variable residual plot, the left bar shows residual and the right shows how well the variable is
predicted against a validation set.
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The decision on number of PCs to use is a complicated matter. Examining the residual
decrease provides a good guidance on how many to choose. The total residual variance
is expressed by (Esbensen et al., 1998):

e, =€ i=1,2.,n (2.14)
i=1

2
tot

where ¢’ is the squared residuals of the observations, e, is the total residual variance

and #» 1s the number of observations.

24 COMMON MULTIVARIATE REGRESSION METHODS

2.4.1 Multivariate Linear Regression and Principal Component Regression

In data analysis response prediction is often done by some regression method. The
simplest and most commonly used is the univariate linear regression, y = a + bx
(Esbensen et al., 1998). In the multivariate case the corresponding technique is called
MLR (multivariate linear regression), which fits a linear combinations of several
variables, x; x, ..., X,, to describe the response, y (Esbensen et al., 1998).

y=by+bx, +bx,+..+bx,+ f (2.15)

where b; are the regression coefficients, x; are the observed variables and f'is the factors
not included in the model and noise.

The coefficients b; can be estimated from the least square approximation:
b =(X'X)" X'y (2.16)
where the vector y contain the observed values of the response.

In equation (2.16) the limitation of the MLR is revealed. The least square estimate
includes the inverse of the matrix (X’X), which may cause trouble if it is singular or
close to being singular i.e. containing any co-linearity or dependencies among the
variables, x; (Esbensen et al., 1998).

A way around the problem of co-linearity is to use a PCR (principal component
regression) (Esbensen et al., 1998). The PCR is actually a combination of PCA and
MLR. The data matrix, X, is first fully decomposed to a set of principal components,
which by definition are orthogonally independent. A MLR is then performed on the new
dataset to predict the response, y.

The PCR comes with one great drawback: It is not certain that the chosen PCs, who
represent the largest variances of the predictors, X, actually include the factors that
control the response (Esbensen et al., 1998). To be forced to compute the entire set of
PCs would cause the model to be more complex and advantage of reduced
dimensionality would be lost. An attempt to ensure that the model describes the desired
correlations from X to Y is done through PLS-regression.
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2.5 PARTIAL LEAST SQUARES REGRESSION

The PLS—regression uses the variance information stored in the response and then
applies this when decomposing the X matrix in PCs. This manner of performing the
decomposition implies that the variance in the responses, Y, will be explained more
efficiently then with a PCR in Section 2.4 (Abdi, 2003). PLS may be used on either a
single variable response or a block of several response variables.

Decomposing the matrix of predictors with the help of the information stored in the
responses results in a shift of directions of the PCs compared to those of a PCR (Geladi
& Kowalski, 1986). PLS decomposes X into a set of scores, t, and loadings, p, and at
the same time describes the response, Y, as a set of scores, u, and weights, c.

X=TP +E (2.17)
Y=UC +F (2.18)

where T is as before the score matrix of X and P the loading matrix. The matrices U and
C contain the scores and weights from the decomposition of Y. E and F are the residuals
not described by the model.

During the decomposition, the structure of Y is allowed to influence the decomposition
of X by letting the Y-scores, u, be a part of the forming of the X-scores, t; this forming
an inner relationship as:

u, =byt, k=12 ..,n (2.19)
where by is a regression coefficient and » is the number of observations.

It should be mentioned that equation (2.19) is a linear relationship, which is the
simplest, but not necessarily the best. There are ways to account for non-linearities by
replacing equation (2.19) with relations of a higher order or extending X with for
instance squared or cubic terms (Bjork, 2007). If the inner relationship equation (2.19)
is included in the model a possibility to estimate the responses, Y, from the scores of X
is presented as (Abdi, 2003):

Y =TBC +F (2.20)

where B is a diagonal matrix with the regression coefficients on the diagonal and Y
represents the estimate of Y.

The prediction of Y may also be expressed as a relation directly to X; this is done by
using W* instead of W, which connects back to X instead of the residuals of X. Then
the estimate is written as (Eriksson, 2001):

A

Y=B,.X (2.21)

where; B,,; = W(P'W)™
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Bpys is called the PLS regression coefficient matrix and is useful in interpretation of the
model (Eriksson, 2001). It shows how each predicting variable is contributing to the
response.

Geometrically, PLS describes a plane or hyper-plane in the space spanning X (Wold et
al., 2001). However, the scores, t, of X and the weights of Y, ¢, indicate directions, in
this plane, with highest correlation to Y (Figure 14), which performs a link between the
predictors and the responses (Wold et al., 2001).

Direction of best correlation #
with Y

Figure 14 The line shows the direction with highest correlation to Y in the plane formed by two PLS
components.

PLS is an iterative method calculating one PLS component at the time. Starting the
algorithm the matrices X and Y are considered as residuals, Ey and F,, respectively; then
for each calculated component its contribution to the residuals is subtracted (Abdi,
2003). The sizes of residual matrices are often measured by the total sum of squares,
SSg and SSg. They serve as a measurement of how much of the residuals are explained
by each component (Abdi, 2003). However, the risk of over-fitting the model is severe
and cross-validation may therefore be more reliable when choosing the number of
components (Wold et al., 2001). The aim is to achieve a model with the smallest
possible residual matrix, consisting of as few PLS components as possible.

The algorithm of PLS is performed as (Wold et al., 2001):

1. wu,, =Yy, starting Y-score vector

N

w = X'u/u'u which calculates the weight vector (directions) in X for the score
vector, .

w should be normalised as ||w|| =1
t=Xw computes the corresponding score vector, t, of X.

c=Y't/t't determines the weight vector, ¢, of Y.
u=Yc/c'c calculates the updated score vector, u.

AN
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7. If e, —t |/t

has not converged: return to step 2, otherwise proceed two step 8.
8. p=Xt/(t't) determines the loading vector.

< &, where ¢ defines the tolerance limit of convergence. If it

new;

9. b=tu computes the regression coefficient
10. X=X—tp’ subtracts the contribution of the scores and loadings from the
residuals

11. Y=Y -btc" deflates Y.
Restart to calculate the next PLS component.

The above algorithm is one of the simplest for PLS regression and is called NIPALS
(Wold et al., 2001). There are other alternatives derived for different shapes of data
(Wold et al., 2001). For instance the NPLS deals with matrices of more than 2
dimensions e.g. matrices of cubic form (Bjork, 2007).

As with PCA, PLS is also closely related to singular value decomposition (Abdi, 2003).
It can be shown from the algorithm that the weight vector, w, is the first right singular
vector to the matrix X T and the weight vector, ¢, is the first right singular vector (Abdi,
2003). The first score vector, t, may be calculated as the first eigenvector of the matrix
XX’YY’ and the first score vector, u, is the first eigenvector of YY’ XX’ (Abdi, 2003).
This may be repeated to retrieve following score and weight vectors by using the
deflated matrices (Wold et al., 2001).

2.5.1 Interpreting and Analysing the Model

The characteristics of the PCA model may be analysed from the scores, loadings and
residuals; while the interpretation of a PLS-model is mainly done from the weights,
regression coefficients and VIP (variable influence on projection) (Eriksson, 2001).

As with PCA the score plot is a tool to identify outliers and trends in the model
(Eriksson, 2001). The scores from the X and Y blocks may be plotted separately to
reveal the model structure of each block, but also the score from X may be plotted
against the corresponding score vector in Y (Eriksson, 2001). This enables the
possibility to identify non-linearities between X and Y (Figure 15), which may indicate
the need for transformations of the data.
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Figure 15 The plot of the scores from X and Y projection, a tool to discover non-linear relationship.

The residuals also provide information about the model. For instance the size of the
residuals could be viewed as an indication on model quality (Wold et al., 2001). It is
also possible to distinguish moderate outliers, who could not be identified by the score
plot, and to examine how much of the variation in the variable is explained by the
model (Eriksson, 2001). This is done in the same manner as with the PCA described in
Section 2.3.3.

Pressing on with analysing the model; the first tool is to analyse the weights of the
predictors and the responses. The weights are plotted either separately for the predictors
and responses or jointly, where the latter shows how the predictor variables affect the
responses, and the separate plots displays how the responses or predictors relate to each
other (Eriksson, 2001).

Studying the sizes and directions of the PLS regression coefficients; it is possible to
distinguish how strong impact the predicting variables has on one response variable
(Eriksson, 2001). This is visualised by a bar chart showing the size and direction with
the chosen confident interval (Eriksson, 2001). In accordance to this there will be one
chart for each response (Figure 16).
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Variables influence on projection (VIP) is a measurement of how great the importance
of a predicting variable is to the entire model (Wold et al., 2001). It takes into account
both how great the variable influences the representation of X and its importance in
estimating Y (Wold et al., 2001). For each model, there is only one vector representing
the VIP values, which makes it easy to overview. The VIP value is calculated as:

VIP, =\/(i(w§k (ssv, —SSYH))-LJ (2.22)

g SSY, - SSY,

where 4 is the number of PLS components, SSY is the sum of square from the residual
matrix of Y, which represents the explanation and K is the number of predictor variables
(Eriksson, 2001).

Equation (2.23) shows that the VIP values are always positive and that the sum of all
the VIPs is equal to the number of predictor variables, which further implies that
variables with greater VIP values than one has the largest influence on the model. This
may be visualised in a VIP bar chart (Figure 17).
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Figure 17 The variable importance plot shows how much a variable affects the model.
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2.6 MULTIVARIATE SPATIAL INTERPOLATION

The two different interpolation methods considered in this thesis are described below.
Kriging, the more complex of the two, takes into account how fast the value changes in
the field. The other method, called inverse distance weighted (IDW) interpolation, only
considers the distance between points.

2.6.1 Semivariogram

The semivariogram is a function describing the spatial variance in a field (Cressie,
1991). In other words it may be considered as an expression of the spatial dependency.
Supposing the variations in the field are not completely stochastic, the variance is likely
to increase with distance, i.e less dependency is visible (Figure 18). Calculating a
semivariogram from spatial sample data is done by (Cressie, 1991):

1
v(h)y=—— > \Z(s.)—Z(s, 2.23
7(h) 2.|N(h)|];h)( (s)—Z(s))f (2.23)

where N(h)= {(sl.,sj) s, —s =hyi, = 1,...,n}, 1.e. the number of observations within

the same relative distance to each other, and Z is the observations. It is easy to see the
resemblance with the estimator of variance.

22



N.--.

£ 25 .

H e

: -

E‘ 20

™ [}

-] y

=|. ‘-

E 15}

[ -

] L} ! +al

E [ 19 LN e ll.-.

2.

E "

[™ "

@ - .
1 1 1 1
25 50 75 100

Distance (metres)

Figure 18 Showing an example of a semivariogram, with a fitted model. Notice how the variance
increases with distance (Clark, 2001).

The variations in the field often depend on the direction, which is called anisotropy
(Cressie, 1991). For instance the semivariogram in east-western direction may differ
from north-south, thus the calculations are commonly performed separately for each
direction. This may also be performed in different ways either as only observations in a
certain direction, for instance east-west or as observations within a certain angle of
tolerance, e.g. all observations between 45 degrees north and 45 degrees south of the
east-western line may be included.

When a semivariogram has been estimated from the empirical data a mathematical
model is fitted to approximate the function, There are a number of different models
commonly used for this (Cressie,1991); however, only the exponential model, which
was used in this thesis will be described here. The model is given by:

0, h=0
— I
y(h)= co+cl(l—e AJ h=0 (2.24)

where ¢ is the nugget effect most likely caused by measurement error and microscale
processes (Cressie, 1991). Often the experimental semivariogram does not start at zero
but has an offset called nugget. The model converges towards ¢, + ¢,. The distance is

described by % and a is called the range (Cressie, 1991).

2.6.2 Ordinary Kriging

The spatial interpolation or prediction technique evaluated in this thesis is called
Ordinary Kriging. It allows the mean value to vary throughout the field, but assumes a
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constant mean locally in a smaller sub-field or neighbourhood (Bohling, 2005). The
spatial interpolation is denoted as (Cressie, 1991):

2@*»:ji4-2@) (2.25)

where Z(s*) is the value estimate at the spatial location s*, A, are the interpolation
weights specific for the location s* and Z(s,) are the observations at the known
locations s;. The weights A are determined under the constraint of:

S =1 (2.26)
i=1

The basis of determining the interpolation weights is the semivariogram model, which
supplies the semivariance at the locations to be estimated. The weights may be
calculated by solving the system (Cressie, 1991):

ﬂ/(Sl,S*) y(Slasl) ]/(Slasn) 1 /11
: : : 1 :
— 227
(5,05 || 705,08 o (s,8) 1) A, 227)
1 1 1 1 o\ u

where v indicates the semivariance obtained from the model in (2.24) when the distance
between the two locations are inserte. p is called the Lagrange parameter, which with
last row and column of ones ensures the constraint in equation (2.26). The Lagrange
parameter is also used when calculating the prediction error, which is given by (Cressie,
1991):

AN ([ 7(sy,8%)
2 | : 228
T (s, (2.28)
Y7, 1
where
Oox = var(2(s*) — z(s¥)) (2.29)

A well modelled semivariance is very important. Without a thorough investigation to
obtain a satisfactory semivariogram the results may not be reliable (Cressie, 1991).

2.6.3 Inverse Distance Weighting

The inverse distance weighted interpolation does not consider how the distance is
connected to the relationship between observations. It focuses instead only on the
distance and is given as (Shepard, 1968):
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2% =3 (2.30)

where

1
R — 2.31
Wi d(s*,5,)" ( )

where d(s*,s;) is the distance between the known observation at location s; and the

unknown at location s*. The exponent, p, is called a power parameter and was for this
thesis set to two.
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3 MATERIAL AND METHOD

The modelling could be divided into four different parts all related to the multivariate
methods described in the theory chapter. However, these four parts could also be
subordered into two separate areas; one dealing with the data structure, relations
between variables and prediction; and the other using spatial interpolation to overview
the spatial distribution.

3.1 DATA DESCRIPTION

Nordkalk uses two different sampling methods; diamond drill core and drill cuttings.
The chemical data from diamond drill cores has been collected from a congregated
sample of a three meter drill core. This could be viewed as the mean chemical
composition of the three meter core column. From the same core, a thermal
disintegration test has been performed. During the diamond core drilling procedure the
sample is continuously rinsed from drill cuttings by water. This causes soft parts of the
rock, such as clay, to be rinsed away, which affects the analysis results.

The drill cuttings have been gathered, while drilling to place the explosives. Also in this
case the analysis has been performed as mean samples over three meters (most cases,
deviations occur). A problem with these analyses were that the depths of the samples
only were approximately correct, which adds a spatial uncertainty to the data. Opposed
to diamond drilling there is no rinsing present with this method.

There were three different datasets. Two sets containing chemical data from drill
cuttings. The third dataset originated from diamond drill cores, which were analysed
with respect to both chemical components and the thermal disintegration index. The
quarry has been exploited in two levels. The drill cuttings datasets are each originated
from one of these levels and the diamond core drill covered the depth of both levels in a
single dataset (Figure 19). In all datasets the chemical component were given as ratios
in percent. The chemical components in the data were: Al,03;, CaCO3, CaO, Fe,0s3,
KZO, MgO, Mn203, Ml’lO, NazO, P205, S, SlOz and TiOz.

The physical parameter, thermal disintegration index, measures how resistant the stone
is to thermal strain. In the analysis the stone is crushed into a 5 — 10 mm fraction and is
slowly exposed to rising temperature. When the test is finished the disintegrated ratio of
the stone is measured. A high index indicates low resistance.
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Figure 19 Ilustration of how the datasets are represented in the field.

In Figure 20 the three most commonly observed problems in the series plots are encased
in red circles: outliers, rounding errors and zeros. It should be emphasized that this is
not a time series, but 3-dimensional spatially distributed data; hence it is probably not
possible to determine trends, if present, from this plot. Outliers should also be treated

with caution since it may not be obvious to see if nearby samples support the sample or
not.
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Figure 20 An example of a variable plotted separately and the three most commonly occurring problems:
outliers, missing values and rounding errors.

The zeros in the data were concluded to be originated from missing analysis (Fjéader,
personal communication, 2009); a problem mainly referring to variables considered to
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be of low interest. A few variables also contained values set to minus one. These were
concluded to be referring to analysis not reaching the limit of detection (Fjader, personal
communication, 2009).

The distributions of the separate variables were determined to be either positively or
negatively skew, and may not be considered as normally distributed. In Figure 21 an

example of the distributions in the dataset is displayed.
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Figure 21 The positive skew distribution of the thermal disintegration index.

3.2 DATA PREPERATION

The immediate problems with the data were presented as: outliers, rounding errors,
missing analysis and non-normal distribution. Since the PCA is a powerful tool to
identify outliers, these were not dealt with in the data preparation, but noticed. The
rounding errors were accepted as an existing problem, which had to be considered when
analysing the results. To prevent the zeros and the minus ones from affecting the
analysis, they were replaced by missing values.

Since the variables were to be used in PCA and PLS, which are considered to be robust
towards deviations from normality, transformations to improve normality were, strictly
speaking, not needed. However, logarithmic transformations were in some analysis used
to shift the variables to appear more normal.

33 DATA STRUCTURE

This modelling part forms the foundation in the efforts to predict the thermal
disintegration index and sulphur content from the geochemical data. While predicting
sulphur from the drill cuttings may be considered quite trivial, thermal disintegration
index on the other hand proved more complex. Perhaps not so surprising since thermal
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disintegration index is a geophysical property, which may not have any correlation with
the geochemical composition.

3.3.1 Data Overview

The preliminary step to obtain an overview was to calculate an overall PCA model of
the entire diamond core dataset. To start up the modelling the data was imported to
SIMCA-P, which was used to calculate all the models based on multivariate analysis. A
first PCA model was computed for diamond core dataset and several outliers were now
excluded.

3.3.2 Levelled Data Overview

Since the data is distributed over three dimensions the data was sorted according to
depth and modelled by PCA separately for each level. Outliers were excluded
continuously during the modelling, but cautiously not to overfit the models. The
layerwise models were compared to the other layers and to the overall model.

3.3.3 Transformed PCA

Since all variables were determined non-normal, logarithmic transformations with an
offset were applied.

3.4 PLS PREDICTION

In order to predict the thermal disintegration index from the drill cuttings data a PLS
model predicting thermal disintegration index from the diamond core data was
computed. This was followed by an attempt to establish a connection between the drill
cuttings data and the diamond core data, which would enable a possibility to predict
thermal disintegration index directly from the drill cuttings.

Since no correlation was found between thermal disintegration index and the sulphur
content, a separate model was calculated to predict sulphur. No model from drill
cuttings to diamond core data was needed for sulphur since it is measured in the drill
cuttings.

The PLS modelling was conducted both layerwise and for the entire diamond dataset.
Sulphur and thermal disintegration index were modelled. In the dataset every fourth
observation was excluded and used as validation set. A linear model was determined
and then two different transformation approaches were used: first logarithmic as in
section 3.3.3, and secondly by trying to determine a non-linear relation between thermal
disintegration index and each variable separately, and inverting it.

3.5 CORRELATION OF DIAMOND CORE DATA AND DRILL CUTTINGS
DATA

Analysis to establish a connection between drill cuttings data and diamond drill core
data was conducted. Initially the measurements from the diamond samples were linked
to the corresponding measurements from the drill cuttings analysis. The observations
were sorted by X direction, then by Y direction and finally by depth from surface. A
program connecting the observations by position and depth was written in Matlab. From
the more than 3000 initial diamond observations and 5000 drill cuttings observations
only 25 matching locations were found. These were imported to SIMCA-P and
modelled.
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3.6 SPATIAL INTERPOLATION

By representing the data from the field in just a few principal components it is possible
to obtain an overview of the field characteristics, presuming that the components are
chosen carefully.

An area with high spatial sample frequency was chosen as model data. The chosen area
forms a rectangular field starting at point (3,000; 10,600) and ending in (3,750; 11,000)
in the local spatial coordinates.

A two component PCA model was constructed from the geochemical data of field A
and the score vectors were exported together with their spatial reference to MATLAB.
The interpolation method is sensitive to non-normality. This was dealt with by
logarithmically transforming the input data before determining the PCA. The scores,
which could be considered as the output data from the PCA showed near normal
distribution.

The semivariograms of the two PCs were calculated from the observations. Differences
in variance occurring due to anisotropy were not considered, since the sample intervals

were to large to support the analysis, i.e. isotropy was assumed.

Exponential models were fitted to the semivariograms for both PCs. These models were
later used in the calculations of the weights in the Kriging interpolation (Table 1).

Table 1 Semivariance models used in Kriging interpolations

PC Model equation 0
0, h=0 ¢co=19
1 y(h;0) = ¢+l l— eiuh% h+#0 201]:14653
0, h=0 ©¢o=1,07
2 y(h,0) = ¢, +e¢ll- e_Hh% h+0 ;1;2(())’32

The results from the Kriging interpolation were compared by terms of mean squared
error (MSE) to an inverse distance weighted interpolation. About one fifth of the scores
were excluded from the interpolations to serve as validation.

The original data had the spatial frequency of 50 m in X-direction and 100 m in Y
direction, and had the total length of 850 m in X-direction and 400 m in Y-direction.
When the 15 validation points had been excluded each depth layer contained 65
observations which were used in the interpolation. The interpolations were carried out
with 170 points in X-direction and 80 points in Y-direction; a total of 13,600 points per
layer.

As a comparison the more trivial inverse distance weighted interpolation method was

used. The weights were calculated as the inverse squared distance from the evaluated
point. Points within a distance of 200 meters were included in the interpolation.
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4 RESULTS
4.1 DATA STRUCTURE

4.1.1 Diamond Core Data Overview

The first PCA model, which was calculated for the entire diamond core dataset, is
presented by score plot (Figure 22) and loading plot (). The model was constructed by
two principal components; together representing almost 76 % of the variance in data.
The model showed a predictive power of about 62 %.

4 7 6 5 4 3 2 4 0 1 2 3 4 5 6 T & 9 10 11 12 13 14 15 16 17
1]

RZX[1] = 0.63883 REX[Z] = 0.117839 Ellipse: Hotelling TZ (0.95)
Figure 22 The score plot of the diamond core dataset.
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Figure 23 Loading plot of the diamond core dataset

It is possible to see that the first component is strongly influenced by the relations
between CaO, CaCO; and SiO;, K,0, Al,O3, Fe,03, TiO,, which are two groups,
internally correlated and negatively correlated to each other. The score plot shows many
deviating observations associated with high values in the second group mentioned
previously.

The dominating variables to the second PC are P,Os and Mn,0O3, which also seem
closely related. Observations deviating in the second PC direction often seemed to be
connected to high values in these two compounds.

Sulphur and thermal disintegration index, which are of interest to control in the
production does not seem to have any close correlations to other variables. The loading
plot also shows thermal disintegration index, TS, to be situated quite close to the origin.
The explanatory ratio of each variable is visualised in Figure 24, only about 20 % of
thermal disintegration index was explained by the model.
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Figure 24 The fraction of explained variance for each variable calculated from the residual size and the
fraction of predicted variance calculated from an external validation dataset.

Figure 24 shows that the variables closely related to the first PC were modelled and
predicted well. The variables, which were described by the second component, although
in some cases well fitted, seemed difficult to predict.

4.1.2 Levelled PCA of Diamond Core Data

The topmost two or three layers differed slightly from the deeper layers in structure,
mainly related to the second PC. Relations between Mn,03, P,Os and sulphur varied in
particular (Figure 25 & Figure 26). In general though, all PCAs much resembled the
overview PCA of the entire set.
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Both the explained variance ratio and the predictive power increased to some extent
towards deeper levels (Table 2). The layers are numbered from one starting with

topmost layer.

Table 2 The variance explained and validated by the models for each layer

Layer  Explained variance [%] Predictive power [%]  Notes

1 65.1 44.5

2 70.9 52.2

3 70.5 51.9

4 76.5 62.9

5 76.3 64.3

6 76.0 61.0

7 79.5 64.9

8 78.7 64.5

9 78.8 62.7

10 80.8 59.5 Few values

11 91.2 64.2 Few values, different
structure.

The variables thermal disintegration index and sulphur, which are to be predicted in
later chapters by PLS, naturally are of high interest. How well the model for each layer
explains these characteristics may be viewed in Figure 27. In Figure 28 the goodness of
prediction for the layer models is shown. Similar plots for all variables and layers may

be viewed in Appendix 1.
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Figure 27 The explained variance fractions for sulphur and thermal disintegration index shown layer by

layer.
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4.1.3 Transformed PCA
No modelling improvements were revealed, with the applied transformation.

4.2 PLS PREDICTION

4.2.1 Prediction from Entire Diamond Core Dataset

A first attempt was made to create a model from the entire diamond core data, which
predicted sulphur and thermal disintegration index at the same time. This model was
modelled from centered and standardised data with no transformations. As mentioned
earlier the data was not normally distributed, which is not necessary but desirable. The
model consisted of five components describing 94 percent of the variance in the X
matrix, while about 53 percent of the variance in the response matrix was accounted for.
Sulphur was predicted quite well by the model, whereas thermal disintegration index
was poorly predicted. Figure 29 shows how well the model predicts thermal
disintegration index when compared to an external validation set.
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Figure 29 Thermal disintegration index (TS) predicted values plotted against observed values. The
straight line represents the PLS model.
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In the same manner the model predicting sulphur may be viewed in Figure 30.
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Figure 30 Predicted values for sulphur plotted against observed values. The straight line represents the
PLS model.
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When studying the variable importance plots and the PLS coefficients the thermal
disintegration showed to be most influenced by silica, potassium and aluminium (clay
minerals). High clay values pointed towards low disintegration index. Sulphur seemed
strongly influenced positively by iron content.

4.2.2 Prediction from Layered Diamond Core Data

In the same manner as with the PCA further PLS models were calculated for each layer.
They all showed great similarity in appearance with the models described in Figure 29.
These models may be studied in detail in Appendix III. The prediction of sulphur
seemed to improve when leaving the topmost layers. An example of this is visible when
Figure 31 is compared to Figure 32. The prediction of thermal disintegration index on
the other hand did not improve noticeably in any layer.
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Figure 31 Predicted values of sulphur plotted against observed values for layer 1 (0-6 m).
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Figure 32 Predicted values of sulphur plotted against observed values for layer 4 (12-15 m).

4.2.3 Transformed Predictions
Neither of the two transformation approaches, logarithmic and linear relation to thermal
disintegration index, displayed any modelling advantages. Although near normality was
achieved in the first approach and improved linearity for some variables in the second,
the transformations rather seemed to induce non-linearity to the models.

4.3 CORRELATION OF DIAMOND CORE DATA AND DRILL CUTTINGS
DATA

The calculated PCA model consisted of four components, which explained 83 % of the

variance in data. The predictive power in the model was weak, only 25 %. Figure 33

shows the loading plot of the first two components, together accounting for almost 67

percent of the variance.
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Figure 33 Loading plot of the first two components of the diamond core drill and drill cuttings dataset.
Variables starting with a lower case k, indicates variables from the drill cuttings.

The observations from diamond drill core were mainly located in the second and fourth
quadrant, whereas the drill cuttings observations were located in the first and third
quadrant.

When examining the third and fourth component some correlation between the variables
of the drill cuttings data and the diamond core data may perhaps be noticed, but since
only a small part of the variance in data were described by these component it is hard to
decipher what this might indicate.

The inner structures of each dataset were examined through individual PCA models

fitted to the data. Both models were composed by two principal components. Figure 34
shows how the variables are related to each other in the diamond drill dataset.
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Figure 34 Loading plot of PCA model fitted to the diamond observations.

The structure of the diamond samples were compared to the structure of the drill
cuttings data (Figure 35).
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Figure 35 Loading plot of PCA model fitted to the drill cuttings observations. Observation No. 12 was
excluded from the model.
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The inner structure of the two sample types showed to be similar with respect to the first
component. However, P,Os related differently to the other components in the drill
cuttings data compared to the relations in the diamond drill dataset.

It was not possible to achieve any satisfactory PLS model to predict neither of the two
sample types from the other.

4.4 SPATIAL INTERPOLATION
In Figure 36 the calculated semivariogram from the first PC is shown.

? T T T T T T T T

| 1 1 1 | | | 1
|:II:I 50 100 140 200 250 300 350 400 450
diztance [m]
Figure 36 Semivariogram from scores in the first PC. The solid line shows the experimental variance; the
dashed line is the fitted model.

Since the original samples were received as mean value of an entire 3 meter core
column, a three dimensional interpolation was not possible. It allowed however to
interpolate the horizontal spread. In Table 3 the mean squared errors are displayed and
may be compared to the observed variance in the field.

Table 3 shows how the error varies greatly depending on the layer and that the two

methods were on most occasions quite similar in error. In most cases, the error of the
models were less than the observed variability in the field.
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Table 3 The mean squared errors (MSE) and the observed variance for each interpolation technique, PC
and layer

Layer PC MSE MSE (idw) Observed variance
(Kriging)
1 1 1.80 2.26 2.00
2 0.21 0.21 0.31
5 1 1.83 1.66 3.70
2 0.49 0.43 0.54
3 1 3.53 3.48 5.18
2 0.59 0.61 0.43
4 1 5.60 5.92 6.45
2 0.30 0.22 0.78
5 1 2.51 2.39 5.46
2 0.35 0.30 0.72
6 1 2.99 2.76 4.83
2 0.48 0.52 0.42
7 1 6.62 6.58 9.83
2 0.66 0.57 0.57
g 1 5.33 4.47 9.25
2 0.66 0.56 0.65
9 1 5.40 5.14 6.58
2 1.07 1.10 0.74

Every interpolation contains uncertainty, which could be considered as the real value
variability from the interpolated value. As the distance from the observed location
increases the uncertainty will also be larger. In Figure 37 it is visualized how the
uncertainty or Kriging error varies over the interpolated field.

3200 3300

Location X [m]

Figure 37 The Kriging error of layer 5.

It is clearly noticeable how the uncertainty is significantly smaller closer to the observed
locations. Further on, from Figure 37 it is easy to see where the validation locations
have been excluded and how missing observations in the upper right corner affects the
interpolation variability; an area which in this case actually could be considered as
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being extrapolated. It is important to remember that the Kriging error calculation
demand accuracy in the semivariogram to be reliable.

An example of what the interpolated field looks like is displayed in Figure 38.
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Figure 38 Kriging interpolation of layer 5 in the field. Red indicates the abundance of minerals connected
to clay presence.
As to illustrate and emphasise the differences between Kriging and Inverse Distance
Weighted interpolation the same layer is shown in Figure 39 with IDW interpolation.
Notice the more drastic changes.
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Figure 39 IDW interpolation of layer 5.
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5 DISCUSSION

5.1 DATA PREPARATION

Many suspected outliers were found when examining the data one variable at the time.
The main problem however, was to identify if the outlier had support from surrounding
measurements. Perhaps this would have been easier to see if values were plotted as
images layer by layer with accurate spatial relations. That would not include the
surrounding samples in the third dimension, and therefore still exclude valuable
information.

Clarifying if a whole observation or only a single variable in the observation were
deviating was not possible when data was examined as series or images. The outliers
were ultimately left to be dealt with in the PCA, which has the advantage of being able
to identify both deviations in entire observations and in single variables. However, the
spatial problem is not solved by PCA.

The organised patterns discovered in data, occurring in variables present in low
quantities, were most likely originated from rounding and the limit of detection. This
may be due to either the limit of detection of analysing instruments or the measurement
take down by operator. With data stretching over a time period of over 30 years this
may not be surprising although still important to avoid in the future, since the
inaccuracies in data may inflict difficulties when modelling or analysing the data.

Obviously during periods of the quarry operation some variables were not considered of
importance; resulting in large areas of missing values. The consequence is that less
information is included in the analysis.

Cressie (1991) mentions that normal distribution is generally uncommon when
analysing geochemical data. A possible explanation in limestone may be the composure
of the analysed volume. The variability in different limestone types may cause the
disturbance. Perhaps, the dominating composures are normally distributed, and smaller
fractions of differently composed rocks shift the overall distribution from normality. An
idea would be to consider samples originating from the same rock type separately to
reduce the variability in data.

5.2 DATA STRUCTURE

The skew distributions observed during the univariate analysis were clearly visible in
the PCA models. Deviating observations were mainly concentrated around the first
principal component and inclining towards high positive values. This was probably
related to the clay content in the sample. From the loading plots it was apparent that the
clay minerals and calcium are negatively correlated, which indicates that these
components share space.

Phosphorous and manganese showed to have different relations to the other
components, possibly due to the low amounts of these compounds in the rock, and the
difficulties with measurements close to the limit of detection. Another explanation
could be the crystal structure. It is known that sulphur for example is bound inside the
calcite crystal, whereas clay minerals are rather situated in the fractures. Whatever
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underlying reason which separates the two components, phosphorous and manganese
are often present together.

Of special interest during the analysis was to establish a relation between the physical
characteristic thermal disintegration index and the chemical composition. However from
the PCAs thermal disintegration seemed to have little in common with other
components. The variable residual plots also proved this to be the case. Probably the
chemical composition of the rock has very little to do with its resistance to
disintegration at high temperatures. To better explain the mechanisms involved the data
needs to be complemented with other parameters e.g. grain size etc..

When the analysis was continued to include layerwise PCA models a change in
structure was noticed. Mainly sulphur, phosphorous and manganese were involved,
which could be explained by a number of reasons. Perhaps the most plausible
explanation may be that this was caused by the stratified nature of the rock. This may
also be the explanation to the somewhat varying modelling results. One layer may be
much more homogene compared to another depending on the ratio of samples in the
layer originated from the same rock type. Since the present observations serve as an
average value over a three meter drill core or three meters worth of drill cuttings the
data becomes harder to characterise and valuable information may be lost.

Another thought was that the differences may be caused by the age of the limestone or
that the rock at the topmost twelve meters or so, which deviated in structure from the
deeper layers, were perhaps formed in a different manner, under different conditions or
in a different environment. Since limestone is originated from coral reefs it has to be
considered that changes in the surroundings may affect the rock.

5.3 PLS PREDICTION

The predictive part of this thesis could be divided into two different categories, of
course with connection to the two distinct responses, sulphur and thermal disintegration
index. Category number one would involve finding a relationship between chemical
composure and a physical characteristic. Category two involves determining a chemical
component, with a slightly different behaviour, from the presence of other components.

In the results presented in section 4.2.1 and 4.2.2 the thermal disintegration index
showed not to be easily predicted from the chemical data. As suspected from the earlier
PCA models, the lack of correlation became a problem during the PLS modelling. In the
prediction plot in Figure 29 the thermal disintegration index appeared as if it may have
some non-linear relation to the chemical components. Even though several different
transformations were tried, nothing seemed to improve the relation significantly. The
transformations rather induced non-linear behaviour in other variables and even shifted
the models further from normality.

The work with the PLS model for thermal disintegration index revealed that it may be
connected to aluminium, potassium and silica, which are mainly related to clay
presence. This could indicate that it is grain size or the rock structure rather than the
chemical structure that affects the resistance to disintegration. Though it may seem
trivial, a model to predict sulphur was also calculated and proved to be rather good.
However, as with any model derived from sample data, some deviations were visible. It
was interesting to see that the models noticeably improved when modelled in deeper
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layers, a phenomena witnessed in PCA modelling as well. The explanation could be the
same as discussed earlier with stratified rock and better representation in the samples
depending on the rock type distribution in the layers. Perhaps the exceptionally poor
prediction result from the top layer (0-6m), shown in Figure 31, may be due to the effect
of exposure to the atmosphere.

5.4 CORRELATION OF DIAMOND CORE DATA AND DRILL CUTTINGS
DATA

Correlation between the diamond drill core analysis and the drill cuttings analysis was
not found. It should be remembered that since only 25 overlapping sample locations
existed in the data, the analysis may serve at most as an indication of the difficulties
involved when evaluating the sample results.

In the model the principal components of highest variance seemed to be directed
somewhere in between the variables of the drill cuttings and the diamond core samples.
This shows that there are correlations between the two sample methods but also
significant differences causing difficulties when trying to predict one from the other.
Most likely the distinctions between the datasets were associated with the differences
between sampling methods. Apparently these dissimilarities inflict noise on the system,
which overshadows the correlations. It may be possible that the second component
describes the distinctions between the drilling methods rather than correlation of the
variables.

5.5 SPATIAL INTERPOLATION

A Kriging interpolation of the PCA scores was studied. The idea was to enable an
overview of the field in one or maybe two variables only. This study should be
considered as an evaluation of the method and its possibilities with the data at hand.

Since the Kriging interpolation is based on the semivariogram, this introduces the first
problem. In order to get an accurate semivariogram the data must be normally
distributed and it is important that the samples include the changes in variability. This
exhibits the need of careful planning when deciding how to distribute the observations
spatially. In the data at hand the observations were often too wide apart. Only in the X
direction could any actual variation change be witnessed.

The second problem relates back once again to the semivariogram but is also closely
related to the nature of the limestone. Kriging interpolation is based on how much the
observations are thought to affect the interpolated point depending on their distance to
it. However, since the limestone is stratified this could result in large sudden changes in
structure over short distance. Should this be true the interpolation will deliver a poor
result, whereas if it is not, the method is likely to work well. All in all these
circumstances damages the reliability of the method.

The results in this case, which were compared to the most commonly used spatial
interpolation method, IDW, showed Kriging neither to be better nor worse. In most
cases the mean squared error was about the same. It should be remembered though that
an enhanced semivariogram could perhaps improve the interpolation.

It was at first desired to carry out the interpolation in three dimensions, but since the
data was sampled from the entire three meter column of diamond core this left no
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possibility for interpolation in depth. Could this have been considered as discrete data,
and not as mean over three meters, the semivariogram and model could perhaps have
been improved and expanded to three dimensions.
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6 CONCLUSIONS

6.1 DATA OVERVIEW AND PCA

The varying data quality, due to the long time period of collection, induces problems in
the analysis. This is a complication hard to address retrospectively, hence it is important
to take this into account in future measurements.

Principal component analysis extracts information from the data efficiently and in this
case emphasizes the importance of experimental design. In future exploring of
limestone areas a more discrete manner of sample collection is advisable. The present
sample method of three meter measurements should be removed in favour of point
observations with as accurate spatial reference as possible. Preferably in an
acknowledged coordinate system. Analysis taken at both predestined depths and in
accordance to the variations of the rock type would enable more precise models and less
skew distributions in the variables.

6.2 PLS PREDICTION

The predicting model was able to predict sulphur from the other components with rather
good accuracy. The most important variable in the prediction was iron, which perhaps
could serve as an indicator or guide when fast analysis are desired. Further analysis may
be needed to develop this possibility. Improvements concerning measurement
techniques mentioned earlier may enhance the results.

In future analysis of the thermal disintegration, the physical factors may not be ignored,
but rather emphasised in importance if reliable models are desired. Obviously some
important information was not represented in the data, which caused the models to fail,
when trying to predict the thermal disintegration. Results indicating that high clay
content had a positive effect on the disintegration suggest that small grain size is
desirable.

6.3 CORRELATION OF DIAMOND CORE DATA AND DRILL CUTTINGS
DATA

Increased sample overlapping and enhanced sampling methods are needed in order to
deal with the noise complication. A more discrete sampling method would probably
also improve the results.

6.4 SPATIAL INTERPOLATION

The stratified rock causes trouble for the interpolations, thus more suitable sample
collection or more complex interpolation techniques, perhaps considering geophysical
data as well, would be needed to reach desired reliability.

If a Kriging interpolation is to be used, the sample spatial frequency should be given the
outmost attention in order to obtain an accurate semivariogram. The data used in this
thesis was not distributed in a manner, which allowed a satisfactory semivariogram to
be determined.
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The results in the interpolation analysis showed that there is little to gain from
performing the Kriging interpolation in favour of the less complex inverse distance
weighted interpolation when faced with this kind of data.
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APPENDIX I

SCORE AND LOADING PLOTS; DAIMOND CORE LEVELED DATA
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APPENDIX II

EXPLAINATORY PLOTS
Plots for all PCA model modeled with two —PCs; starting with layer No. 1

dis_tes1_u_0_och_1_som_YiLew M3 (PCA-Clasz(1)), Lev 1 raw B r2vig2)icum)
W)

dia_test_u_0_och_{_sort_Vilev M1 FCACss), Lv? B RIV2|fcum)
CE2leum)

e 3 *® # * # @ £ # o # ¥ =
§ 0§ 0% & 8 g g 8 § " o8op ¢ § 5% F 8 &8 Fogopo®voE ook
O EE B ' g oy 2 og &%z f g §
ine I (Primary) i (Frimay]
FMCA P 115 - I00W 1040 19T 50 IMIAR 116 200010000 138257
dia_test_u_0_och_1_son_Liv M23 PCACHss(1 ) Livd Raw [ RI2)icum) dia_tist_s_0_och_1_son_YxLiv M34 (PCA-Class(t). 378, 396 [ R22)cum)
W cv)icum) W cv)icum)
a8
ag:
ar
06
05
04
a3
oz
a1
an
a1
* £ ® @ # [ ® ® a # # P # # » » L ¥ s "‘ #
2 & % & & & 2 & 5 " & g p 2 & % 8 & & 8 & 5 " @& g
ﬁ E bl 3 g g § & = ﬁ E o w = = 3 § - =
Wor 0 (Frimery) Wor 10 (Frimery)
SRaCinde 11 50 H05 100 130438 Saatinde 1151 00100 13055
dia_test_u_0_och_|_sort_¥¥Lev M PCAClass(l), LevEaw [ RIV2](cum) dia_test_u_0_ach_i_sort_Vlev M3 FCAClassil)), LovE Raw [ RIV2|(cum)
G 2eum) W cag2eum)

"l“lhhl

L

& # #* # # * # # # £ ] #* @ # ] # # * # # *® [ # F # #
= - o m w b i n " o = - i ~ n
g 0§ 2 8 § &8 & § § 3§ ¢ g 0§ % &8 ®¥ & & § & R
£ o - 3 = E w - 3 =
Y O [Frimany) Yar O (Froany)
AMCA P 195 30082030 13:00.3] AMCAP 195 30081030 13:00.51



cia_test_u_0_ech_1_sort_¥iLew M0 (POAClass(l)), Lev 7 ow I R2VIG2|(cumn)
B oreg)ieum)

cia_test_u_0_ech_1_sort_¥iLew Md3 (POAClass(l)), LevBoaw I R2VIG2|(cumn)
B oreg)ieum)

05

[

08

%

o4

o4

B
£ £ ® £ 2 # 2 4 & g @ #
H a = = H u\ & B o b
§ ¢ 8 § 8 8§ % .

Vi D (Provaey)

ARCARS 118 IRI0E 130121 ¢

dia_test_u_0_och_1_son_¥¥Linv M&S PG

(), v S e BRIV eum)
W o2 eum)

dia_test_u_0_och

i1_YLew M (PCAC

ARCARS 118 TR0 1105

1. Lv 10w [ R eum)
]

V2| )

¥ B * b » # ® ® o # ]
2 ¢ % ® 8§ 3 8 2 @ g
5 1 & @ g (- =
Wor 0 (Frimery)
Saatinte 1150 061040 130830
dia_test_u_0_och i _YxLiw M52 (PCACI

. L 1w [ RV eum)
W o2 eum)

' # [] [ [ A #* ] ® 2
2 ¢ % ® 8§ 3 8 2 @ g
ﬁ ¥ 3 g : g § a 2

Wor 0 (Frimery)

SRR 115, B0 1030 135140

58

R203%

CACOI%

FENNI%

M0 %
MM203 %

i I (Frimery)

NAZD

F2OS%

=02
nos
=R

SRR 115, B0 1030 13403



APPENDIX III

PREDICTION VS OBSERVATION PLOTS
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APPENDIX IV
Bergartskoder:

Vi arbetar med 5 st. huvudtyper av kalksten, samt en serie variationer och
Overgangstyper:

S Stromatoporoidékalksten

K Krinoidékalksten

R Revkalksten

Fr Fragmentkalksten

M Mairgel

SK Vixellagrande stromatoporoidé- och krinoidékalksten
LK Lerig krinoidékalksten

AK Arenitisk krinoidékalksten

KFr Krinoidékalksten med inslag av fragment

SFr Stromatoporoidékalksten med inslag av fragment
LFr Lerig fragmentkalksten

LR Lerig revkalksten

MK Mork krinoidékalksten

LMK Lerig mork krinoidékalksten

LK Ljus krinoidékalksten

J Jord
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APPENDIX V

Base function of the Kriging interpolation
clear all

close all

load BA;

pos=levkrig(pos) ;

x1lag=170;

ylag=80;

x=pos(:,1);

y=pos (:,2);

lev=11;

f=find(pos(:,4)==1lev);
x1l=x(f);
yl=y (f);

zl=val(f,:);
valid=round(linspace(l, length(x1l),round(length(x1)*0.8)));
valid=valid';

=x1(valid);
1(valid);
=z1(valid, :);
x1 (valid) =[]
vyl (valid) =[]
z1(valid, :)=
gamest=zeros

X
Y=y
Z=7Z
( ;
( ;
[1;

(size(y)):

for i=2:length (x)
d(i)=isequal (x(1),x(i-1));

end

=117

f=find (d==1);

x(£)=1[1;

y(£)=I[1;

z(£,:)=1[1;

%$[c01l,cll,al,typel,c02,cl2,a2,type2] = semivarl (x,Vy,2z);

% [binc,sv,bin _array,svM,gamma_ array,dist array]=semivar ([x
vlez(:,1));

% [binc2,sv2,bin array?2,svM2,gamma_array2,dist arrayz]=semivar ([x
vlez(:,2));

% plot(binc,sv,'*'");figure;plot (binc2,sv2,'*");
[Wl,wel,z,x,y,xest,yest,dx,dy] = kriga([x
v]1,1.9,4.3,160, 'exp', z,xlag,vylaqg);

[W2,we2] = kriga([x

yl,1.07,0.32,200, 'exp',z,xlag,ylaqg);

Zestl, zestl]
Zest2,zest?2]
Zest3, zest3]

= kriget (Wl,z(:,1),xlag,vylag);
idw(x,y,z(:,1),xest,yest,xlag,ylag,200);
kriget (W2,z(:,2),xlag,vlaqg);

[
[
[
[
[
[

Zest4d,zest4d] = idw(x,y,z(:,2),xest,yest,xlag,ylag,200);
errKl] = krigvar (Wl,wel,xlag,ylaqg);
errK2] = krigvar (W2,we2,xlag,ylaqg);

[valpcl]=valet(zestl,z1l(:,1),x1,yl,xest,yest);
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[validwl]=valet (zest2,z1(:,1),x1l,yl,xest,yest);

[valpc2]=valet (zest3,z1(:,2),x1,yl,xest,yest);
[validw2]=valet (zest4,z1(:,2),x1,yl,xest,yest);

%% figure

colormap (jet) ;

imagesc (dx,dy, Zestl) ;

title('Krig PC 1")

colorbar;axis equal tight xy;

xlabel ('Local X');ylabel ('Local Y'");

figure

colormap (jet) ;

imagesc (dx,dy,errKl) ;

title('err PC 1")

colorbar;axis equal tight xy;

xlabel ('Local X');ylabel ('Local Y'");

figure

colormap (jet) ;

imagesc (dx,dy, Zest2) ;

title('IDW PC 1")

colorbar;axis equal tight xy;

xlabel ("Local X');ylabel ('Local Y'");

figure

colormap (jet) ;

imagesc (dx,dy, Zest3) ;

title('Krig PC 2")

colorbar;axis equal tight xy;

xlabel ('Local X');ylabel ('Local Y'");

figure

colormap (jet) ;

imagesc (dx,dy,errK2) ;

title('err PC 2")

colorbar;axis equal tight xy;

xlabel ('Local X');ylabel ('Local Y'");

figure

colormap (jet) ;

imagesc (dx,dy, Zestd) ;

title('IDW PC 2")

colorbar;axis equal tight xy;

xlabel ("Local X');ylabel ('Local Y'");

%$save (num2str (lev))

Calculating the weights of Kriging

function [W,we,z,x,y,xXest,yest,dx,dy] =
kriga (pos,c0,cl,a, type,val,xlag,ylaqg)
x=pos (:,1);

y=pos(:,2);

z=val;%

% for i=2:1length (x)

% d(i)=isequal (x(1),x(i-1));

% end
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o° o° o o°

o\

f=find (d==
x=x (f+1);
y=y (£+1);
gamest=zer
z=val (f+1,

switch 1
case

)7

os(sizel(y));
1)

ower (type)
{'Sph'}
for i=1l:length (y)
dist=sqgrt((x-x(i)) .2+ (y-y(1i))."2);

f=find(dist<=a) ;
gamest (f,1)=c0 + cl.*(1.5.*(dist(f)./a)-

0.5.*%(dist(f)./a)."3);

o° o o°

o°

case

f=[1;
f=find(dist>a) ;
gamest (f,1)=cO0+cl;

end

V=[gamest ones (length(y),1l);ones(1l,length(y))

dx=1linspace (3000, 3850,x1laqg) ;
dy=linspace (10600,11000,vlaqg);
xest=[];
yest=[1];
for i=1l:1length (dy)
for il=1l:1length (dx)
newxest (il,1)=dx(il);
newyest (il, 1)=dy (i) ;
end
xest=[xest; newxest];
yest=[yest; newyest];
end
[L,U]l=1u(V);
we=[];
for i=1l:length (xest)

he=sqgrt ((x-xest (1)) .72+ (y-yest (1)) ."2);
£=11;
f=find (he<=a) ;

he(f)= c0 + cl.*(1.5.*(he(f)./a)-0.5.*(he(f)./a)

=[]
f=find (he>a) ;
he (f)=c0+cl;

he=[he;1];
we=[we he];

b=L\he;
W(:,1)=U\b;
info=round (i/length (xest) *100) ;
disp (num2str (info))
end

W=V\we;

{'exp'}
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o0

o° o oe

o\©°

for i=l:1length(y)
dist=sqgrt ((x-x(i)) .72+ (y-y(1))."2);

f=find (dist>0) ;

gamest (f,i)= c0 + cl.*(l-exp(-(dist(f)./a)));

f=[1;
f=find (dist==0) ;
gamest (f,1)=0;

end
V=[gamest ones (length(y),1l);ones(1l,length(y))

dx=linspace (3000, 3850,x1laqg);
dy=linspace (10600,11000,vylaqg);
xest=[];
yest=[1;
for i=1l:1length (dy)
for il=1l:1length (dx)
newxest (i1, 1)=dx (il);
newyest (il, 1)=dy (i) ;
end
xest=[xest; newxest];
yest=[yest; newyest];
end

[L,Ul=1u(V);
we=[];
for i=l:length (xest)
he=sqgrt ((x-xest (1)) .2+ (y-yest (1)) ."2);

f=find (he>0);
he(f)= c0 + cl.*(l-exp(-(he(f)./a)));

f=find (he==0) ;
he (£f)=0;

he=[he;1];
we=[we he];
b=L\he;
W(:,1)=U\b;
info=i/length (xest) *100;
disp (num2str (info))
end
W=vV\we;

case {'lin'}
for i=1l:length(y)
dist=sqrt ((x-x(i)) .2+ (y-y (1)) ."2);

f=find (dist~=0);

gamest (f,1)=c0 + cl.*dist (f);
f=[1;

f=find(dist==0) ;

gamest (f,1)=0;

end
V=[gamest ones (length(y),1l);ones(1l,length(y))

dx=linspace (3000, 3850,xlaqg);
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dy=linspace (10600,11000,vylaqg);
xest=[];
yest=[];
for i=l:length (dy)
for il=1l:1length (dx)
newxest (i1, 1)=dx (il);
newyest (il, 1)=dy (i)
end
xest=[xest; newxest];
yest=[yest; newyest];
end
[L,U]l=1u(V);
we=[];
for i=l:length (xest)

o\

he=sqgrt ( (x-xest (1)) .72+ (y-yest (1)) ."2);
f=11;

f=find (he~=0) ;

he(f)= c0 + cl.*he(f);

£=[1;

f=find (he==a) ;
he (£)=0;
he=[he;1];

o\°

b=L\he;

W(:,1)=U\b;

info=round (i/length (xest) *100) ;
disp (num2str (info))

o o

o°

end
W=V\we;
otherwise
disp('choose either spherical (sph) or exponetial (exp)')
end
Kriging interpolation
function [Zest,zest] = kriget (W, z,xlag,ylag)

zest=W(l:end-1,:)"*z;

for i=0:ylag-1
for i1=0:xlag-1
Zest (i+1,1il+1)=zest (i*xlag+l+il);
end
end

IDW interpolation
function [Zestl, zest]=idw(x,vy,z,xest,yest,xlag,ylag,toldist)

w=1[];
for i=1l:1length (xest)
w=(sqrt ((x-xest (1)) .72+ (y-yest(i)) ."2));
f=find (w<=toldist);
w=1l./(w."2+eps);
zest (1)=(w(f) '*z (£f))/sum(w(f));
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end

for i=0:ylag-1
for i1=0:xlag-1
Zestl (i+1,il+1)=zest (i*xlag+l+il);

end
end
zest=zest';

Validation code
function [v]=valet(zest,zl,x1l,vyl,xest,yest)

xes=[];
yes=[];
zes=[];

for i=1l:1length (x1)

k=abs (yest-y1l(i));
kmin=min (k) ;
f=find (k==kmin) ;

xe=xest (f);
ye=yest (f);
ze=zest (f);

k=[];

k=abs (xe-x1 (1)) ;
kmin=min (k) ;
f=find (k==kmin) ;

xes=[xes; xe(f(1))];

yes=[yes; ye(f(1))]1;

zes=[zes; ze(f(1))];
end

v=(zes-z1)."2;
v=mean (v) ;

Code for computing semivariogram with anisotropy

function [c0l1,cll,al,typel,c02,cl2,a2,type2] = semivarl(x,y,z)
$x=pos(:,1);y=pos(:,2);z=val;

% distx=zeros (length(x)) ;disty=zeros (length(x));
dist=zeros (length (x));

close all

o9

% Semivariogram North
lags=linspace (60,410,8);
zmean=1[];
for p=2:1length(lags)
gzll=[];gzl2=[];
for i=1l:length (x)
distx=x-x(1);
disty=y-y (1) ;
dist=sqrt ((x-x(i)) .2+ (y-y (1)) ."2);
ang = [((x-x(1))./dist) ((y-y(i))./dist)];

o\°

oe

69



f=[];newdist=[];newz=[];

f=find (ang(:,2)> n(60/360*2*pi) & dist <= max(lags));
newdist= dlst(f),

newz=newz (f, :);

f=[1;

f=find (newdist >= lags(p-1l) & newdist< lags(p)):
newdist=newdist (f) ;

gzll=[qgzll; newz(f,1)]1;

qzl1l2=[qzl2; newz (f,2)];

o

end
zmean (p-1, 1)=mean (qz11) /2;
zmean (p-1,2)=mean (gz12)/2;

zmean (p-1, 3)=(lags (p) +lags(p-1))/2;
end

[gamestl,he,c01l,cll,al, typel]l=semivarmod(1.9,4.1,100, "sph');
[gamest2,he,c02,cl2,a2, type2]=semivarmod(1.07,0.32,200, "exp'

figure

subplot (321) ;plot (he,gamestl, '--r");
hold on

plot (zmean(:,3),zmean(:,1), "'-x");
hold off

title("PCA 1 North'")
axis ([0 max(zmean(:,3))+10 0 max(zmean(:,1))+1])
subplot (322) ;plot (he,gamest2, '--r");
hold on
plot (zmean(:,3),zmean(:,2),"'-x");
hold off
title('PCA 2 North')
axis ([0 max(zmean(:,3))+10 0 max(zmean(:,2))+1])
%% Semivariogram for East
lags=linspace (0,300,8);
zmean=/[];
for p=2:1length(lags)
qzll=[];qzl2=[];
for i=1l:length (x)

distx=x-x(1);

disty=y-y(1);

dist=sqrt ((x- (i)) M2+ (y-y (1)) ."2);

ang = [ ((x=x( ./dist) ((y-y(i))./dist)];
newZ(:,1)= (Z(:,l) z(1,1)).%2;
newZ (:,2)=(z(:,2)-z(i,2)).%2;

o o°

f=[];newdist=][
f=find(ang(:,1
newdist=dist (£
newz=new?z (f, :);
t=11;
f=find(newdist >= lags(p-1l) & newdist< lags(p)):
newdist=newdist (f) ;
gzll=[gzll; newz(£,1)];
qzl2=[qgzl2; newz (£,2)1]1;

ynewz=

’

’

o\

end
zmean (p-1, 1) =mean (qz11) /2;
zmean (p-1, 2)=mean (qz12) /2;
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zmean (p-1, 3)=(lags (p) +lags (p-1))/2;
end

subplot (323) ;plot (he,gamestl, '--r');

hold on

plot (zmean(:,3),zmean(:,1), '-x");

hold off

title('PCA 1 East'")

axis ([0 max(zmean(:,3))+10 0 max(zmean(:,1))+1])
subplot (324) ;plot (he,gamest2, '--r'");

hold on
plot (zmean(:,3),zmean(:,2), "'-x");
hold off
title('PCA 2 East')
axis ([0 max(zmean(:,3))+10 0 max(zmean(:,2))+1])
%% Semivariogram for North-West and North-East
lags=linspace(70,480,10);
zmean=/[];
for p=2:length(lags)
qzll=[];q9z12=[];q9z21=[];q9z22=[];
for i=1l:length (x)
distx=x-x(1);
disty=y-y (i),
dist=sqgrt ((x-x (1)) .2+ (y-y(i))."2);

oe

o0

ang = [((x-x(i))./dist) ((y-y(i))./dist)];
newZ (:,1)=(z(:,1)-2z(i,1)).%2;
newZ (:,2)=(z(:,2)-2z(i,2)).%2;

f=[];newdist=[];newz=[];

f=find(ang(:,1) <= cos(15/360*2*pi) &...
ang(:,1) >= cos(75/360*2*pi) &...
sign(ang(:,2))==1 & dist <= max(lags));

newdist=dist (f);

newz=newz (f, :);

f=[1;

f=find (newdist >= lags(p-1) & newdist< lags(p)):;

% newdist=newdist (f) ;
gzll=[qgzll; newz(f,1)];
qzl2=[qgzl2; newz(£,2)];

f=[];newdist=[];newz=[];
f=find(ang(:,1) <= cos(105/360*2*pi) &...
ang(:,1) >= cos(165/360*2*pi) &...
sign(ang(:,2))==1 & dist <= max(lags));
newdist=dist (f) ;
newz=newZ (f, :)
f=[1;
f=find (newdist >= lags(p-1) & newdist< lags(p)):
newdist=newdist (f) ;
gz2l=[qgz2l; newz(£,1)];
qz22=[qz22; newz(£,2)];

Iz

o

end

zmean (p-1, 1)=mean (qzl1ll) /2;
zmean (p-1, 2)=mean (qz12) /2;
zmean (p-1, 3) =mean (gqz21) /2;
zmean (p-1, 4)=mean (qz22) /2;
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zmean (p-1,5)=(lags (p) +lags (p-1))/2;
end

subplot (325) ;plot (he,gamestl, '--r');

hold on

plot(zmean(:,5), [zmean(:,1) zmean(:,3)],"'-x");

hold off

title('PCA 1 North-East & North-West')
legend('model', '"N-E', "N-W")

axis ([0 max (zmean(:,5))+10 0 max([zmean(:,1); zmean(:,3)1)+1])

subplot (326) ;plot (he,gamest2, '--r"');

hold on

plot(zmean(:,5), [zmean(:,2) zmean(:,4)]1,'-x");

hold off

title('PCA 2 North-East & North-West')
legend('model', '"N-E', "N-W")

axis ([0 max (zmean(:,5))+10 0 max([zmean(:,2); zmean(:,4)]1)+1])
frame=getframe;

Code for semivariogram with isotropy
semivar exp : Calcualte experimental variogram

o° oP

o\°

[hc,garr, h,gamma, hangc, head, tail]=semivar exp (pos,val,nbin,nbinang)

o\

% pos : [ndata,ndims]
% val : [ndata,ndata types]
% nbin : [integer] number of bins on distance anxes

o\°

[array] if specified as an array, this is used.

o\°

% nbinang : [integer] number of arrays between 0/180 degrees
% (default 1)
% Example : load jura data

o°

dwd=[mgstat dir, filesep, 'examples', filesep, 'data', filesep, 'jura', files
epl;

o\°

[p,pHeader]=read eas([dwd, 'prediction.dat']);

idata=6;dval=pHeader{idata};

pos=[p(:,1) p(:,2)];

val=p(:,1idata);

figure;scatter(pos(:,1),pos(:,2),10,val(:,1),"'filled");
colorbar;title(dval);xlabel ('X'");ylabel ('Y') ;axis image;

o° o o o o° o

o\°

Example isotrop:
[hc,garr]=semivar exp (pos,val);
plot (hc,garr) ;
xlabel ('Distance (m)');ylabel ('semivariance');title(dval)

o o° o o

o\

Exmple directional
[hc,garr, h,gamma, hangc]=semivar_ exp (pos,val,20,4);
plot (hc,garr);
legend (num2str (180*hangc'./pi))
xlabel ('Distance (m)');ylabel ('semivariance');title (dval)

o o o° o° o° o

o
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o\

o°

function
[hc,garr,h,gamma, hangc, z head, z tail,dp, f]=semivar exp (pos,val,nbin,nb
inang)

ndata=size (pos,1);
ndims=size (pos,2);

if ndims==1;
% THIS SHOULD BE CHECKED FOR BUGS
pos=[pos 0.*pos];
ndims=2;

end

ndata_ types=size(val,2);
% First calculate the 'distance' vector
nh=sum(l:1: (ndata-1)); % Find number of pairs of data

h=zeros (nh,1);

dp=zeros (nh,ndims) ;
z_head=zeros (nh,ndata types);
z_tail=zeros (nh,ndata types)
gamma=zeros (nh,ndata types);
vang=zeros (nh,1);

’

i=0;
for i1il1=1: (ndata-1)
for 12=(il1+1) :ndata

i=1i+1;
if ((1/20000)==round(1/20000))

disp (sprintf ('semivar exp : i=%d/%d',i,nh))
end

pl=[pos(il,:)];
p2=[pos(i2,:)];

dp (i, :)=pl-p2;

h(i)=sqrt( (pl-p2)*(pl-p2)"' );
z head(i, :)=val(il, :);

z tail(i,:)=val(i2, :);

gamma (i, :)=0.5*(val (i1, :)-val (i2,:)) ."2;
% ANGLE

A

)i
);

aa=sqgrt (sum(pl."2
bb=sqgrt (sum(p2."2
ab=(pl(:) '*p2(:));

)
)
pp=pl-p2;

% WORKS ONLY FOR 2D

if pp(l)==0
vang (1)=pi/2;

else
S vang (i)=atan (pp (1) ./pp(2));
vang (i) =atan (pp (2 ./pp ))
end
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end
end
vang=vang+pi/2;

if length(nbin)~=1
h arr=nbin;
nbin=length(h arr)-1;
end
end

if exist('h arr')==

h arr=linspace(0,max(h).*.3,nbin+l);
end
hc=(h_arr(l:nbin)+h_arr(2:nbin+l))./2;

00000000000000000000000000000000

if exist('nbinang')==
nbinang=1;
else
if length (nbinang)~=1
ang_array=nbinang;
nbinang=length (nbinang) -1
end
end
if exist('ang array')==
ang_array=linspace (0,pi, nbinang+1l);
end
hangc=(ang array(l:nbinang)+ang array(2:nbinang+l))./2;

clear garr

for i=1l:nbin
for j=l:nbinang
f=find (h>=h arr(i

) & h<h arr(i+l) & vang>=ang array (Jj)
vang<ang array (j+1));
)

if (sum(gamma (f, :))==0)
garr (i, j, :)=NaN;
else
garr(i,j, :)=mean(gamma (£, :));
end
end

end
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