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ABSTRACT 
Explorative Multivariate data Analysis of the Klinthagen limestone quarry data 
Linus Bergfors 
 
The existing quarry planning at Klinthagen is rough, which provides an opportunity to 
introduce new exciting methods to improve the quarry gain and efficiency. Nordkalk 
AB, active at Klinthagen, wishes to start a new quarry at a nearby location. To exploit 
future quarries in an efficient manner and ensure production quality, multivariate 
statistics may help gather important information.  
 In this thesis the possibilities of the multivariate statistical approaches of Principal 
Component Analysis (PCA) and Partial Least Squares (PLS) regression were evaluated 
on the Klinthagen bore data. PCA data were spatially interpolated by Kriging, which 
also was evaluated and compared to IDW interpolation. 
 Principal component analysis supplied an overview of the relations between the 
variables, but also visualised the problems involved when linking geophysical data to 
geochemical data and the inaccuracy introduced by lacking data quality. 
 The PLS regression further emphasised the geochemical-geophysical problems, but 
also showed good precision when applied to strictly geochemical data. 
 Spatial interpolation by Kriging did not result in significantly better approximations 
than the less complex control interpolation by IDW. 
 In order to improve the information content of the data when modelled by PCA, a 
more discrete sampling method would be advisable. The data quality may cause trouble, 
though with sample technique of today it was considered to be of less consequence. 
 Faced with a single geophysical component to be predicted from chemical variables 
further geophysical data need to complement existing data to achieve satisfying PLS 
models. 
 The stratified rock composure caused trouble when spatially interpolated. Further 
investigations should be performed to develop more suitable interpolation techniques. 
 
Keywords: Multivariate analysis, interpolation, PCA, principal component analysis, 
PLS, projection to latent structures, partial least squares, Limestone quarry, Klinthagen, 
Kriging. 
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REFERAT 
Utforskande multivariat analys av Klinthagentäktens projekteringsdata 
Linus Bergfors 
 
Brytningsplaneringen vid kalkbrottet Klinthagen är idag mycket grov. Detta öppnar för 
möjligheten att utveckla nya metoder för att effektivisera och förbättra arbetet vid 
brottet. Nordkalk AB som bedriver brytningen i Klinthagen vill utöka sin verksamhet 
med ett nytt brott i samma område av Gotland. Multivariat analys av prospekteringsdata 
kan bidra till att samla nyttig information, som förbättrar exploateringen av framtida 
objekt. 
 Genom analys av borrhålsdata från Klinthagen utvärderades i detta examensarbete 
möjligheterna med de multivariata metoderna PCA (principialkomponentsanalys) och 
PLS regression (partiell minstakvadrat- anpassning). Data från PCA modeller 
interpolerades rumsligt med Krigingmetoden, vilken jämfördes med inverterade 
distansmetoden (IDW). 
 Principialkomponentanalysen förmedlade en överblick över datat. Genom detta blev 
problematiken då kemiska och fysikaliska data ska sammanlänkas tydlig. Samtidigt 
belystes även vikten av god datakvalitet. 
 PLS regressionen visade goda resultat då enbart kemiska data användes. 
Svårigheterna att koppla ihop kemiska och fysikaliska data förtydligades ytterligare 
under denna del av analysen. 
 Vid jämförelsen mellan Kriging och IDW interpolation av Klinthagendatat kunde 
ingen egentlig fördel tillskrivas den mer komplexa Krigingmetoden. 
 Metoderna PCA och PLS kan sägas fungera för geokemiska data, men för att 
förbättra framtida analyser bör en mer diskret datainsamlingsmetod tillämpas. Den 
periodvis låga datakvaliteten, förmodligen beroende på den långa insamlingsperioden 
orsakar även den vissa problem. 
 Det krävs mer än enbart geokemiska data då den fysikaliska parametern, termiskt 
sönderfall ska predikteras med PLS regression. Kompletterande fysikaliska data som till 
exempel kornstorlek kan vara lämpligt. 
 Eftersom berget har avsatts i lager med tvära förändringar av kalkstenstyp blir 
interpolationen svår. Vidare undersökningar krävs för att etablera goda 
interpolationsmetoder på grund av kalkstenens komplexa struktur. 
 
Nyckelord: Multivariat analys, interpolation, PCA, principalkomponentsanalys, PLS, 
projektion till latenta strukturer, partiell minstakvadrat- anpassning, Kalkbrott, 
Klinthagen, Kriging. 
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POPULÄRVETENSKAPLIG SAMMAFATTNING 
Utforskande multivariat analys av Klinthagentäktens projekteringsdata  
Linus Bergfors 
 
Nära Storugns på norra Gotland ligger kalkbrottet Klinthagen, som drivs av Nordkalk 
AB. Där bryts och förädlas en rad olika kalkstensprodukter. Dessa används framförallt i 
olika industriella processer. Den viktigaste användaren är stålindustrin, som använder 
kalksten i sin förädlingsprocess. Klinthagens kalksten har visat sig vara mycket väl 
lämpad för detta ändamål. Tyvärr börjar tillgångarna av kalksten i Klinthagen att ta slut 
och man räknar med att bryta den sista stenen i brottet under 2012. På grund av detta 
har Nordkalk ansökt om att få öppna ett nytt kalkbrott i samma område på Gotland. 
 
För att i framtiden utnyttja kalkbrottstäkter på ett bättre och effektivare sätt finns ett 
behov att utveckla nya metoder för planering och kartläggning. Brytningen och 
planering av nyttjandet av Klinthagentäkten är oprecis och grov, vilket lämnar stora 
möjligheter för förbättringar. 
 
Kalksten består av gamla korallrev och andra vattenlevande organismer som sjöliljor, 
och svampdjur. Klinthagens kalksten bildades för mer än 400 miljoner år sedan, då 
revet låg någonstans i närheten av ekvatorn. Berget har sedan genom rörelser i 
landmassorna förflyttats och pressats upp till den plats det är nu. Eftersom kalkstenen 
bildas på ett så speciellt sätt får den en lagerstruktur som beror på vilken typ av 
organsim som ligger till grund för det lagret.  
 
I denna uppsats utvärderas möjligheterna med de multivariata analysmetoderna PCA 
(Principal Component Analysis) och PLS (Partial Least Squares) då de används på data 
från ett kalkbrott (Klinthagen). Av särskilt intresse för Nordkalk är om kalkens 
temperaturkänslighet och svavelinnehåll kan förutspås. För att vidareutveckla 
undersökningen genomfördes även ett försök att beräkna hur kalkstenen förändras 
mellan provtagningspunkterna med hjälp av en metod kallad Kriging.  
 
PCA är en statistisk metod för att göra data som innehåller många variabler mer 
överskådlig. Analysen ger information om trender och avvikelser i materialet. Dessutom 
beskriver metoden hur de olika variablerna påverkar varandra. 
 
PLS är en utveckling av den teknik som används i PCA men informationen om hur 
variablerna påverkar varandra används för att skapa samband, som kan förutspå hur en 
eller flera variabler kommer att bete sig. 
 
Då Kriging används för att uppskatta hur berget förändras mellan borrhålen analyseras 
först hur långt bort från en punkt omgivningen påverkas av dess värde. Därefter används 
informationen för att, utifrån de punkter där data finns, beräkna vad som kan finnas 
mellan dessa punkter. 
 
Analyserna med PCA visade att metoden fungerar bra för den här typen av material, 
men flera olika omständigheter försvårade analysen. Bland annat var datakvaliteten 
väldigt varierande och den komplicerade bergstrukturen gjorde analyserna svåra att 
tolka. För att förbättra framtida analyser bör provtagningsmetoden förändras något för 
att få ett mer lättolkat material.  
 



 v 

Det fungerade bra att med PLS förutspå svavelinnehåll i kalkstenen, däremot gick det 
inte att förutspå temperaturkänslighet. För att ta fram modeller, som klarar detta måste 
det befintliga datamaterialet kompletteras med ytterligare information. Delar av 
resultaten tyder på att kornstorlek och stenens småskaliga struktur till stor del påverkar 
dess motståndskraft mot höga temperaturer. 
 
Analysen av beräkningarna av bergets utseende mellan provtagningspunkterna visade 
att det med det använda datamaterialet inte finns någon fördel med att använda sig av 
Kriging. Återigen var det de komplicerade variationerna i kalkstenen som bidrog till 
svårigheterna. På grund av lagerstrukturen i berget kan förändringar ske mycket snabbt, 
vilket är svårt att förutse då provtagningarna är gjorda på en mycket grövre skala. Om 
Kriging ska användas måste noggranna mätningar för hur kalkens värden varierar 
genomföras. Frågan om det är lämpligt att använda Kriging bör behandlas noga innan 
försöken påbörjas. 
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1 INTRODUCTION 
The limestone products quarried at Klinthagen, Sweden are used in a wide variety of 
processes, which all demand different characteristics. To meet the demand, an industrial 
exploit of the resource has been developed since the start in 1987 (Karlsson, 2008). In 
year 2004 about 3.2 million tons of limestone products were produced at Klinthagen 
(Karlsson, 2008). However, since the resources are reaching its end a decrease in 
productivity has been inflicted at the location, and the site is expected to be fully 
exploited in 2012 (Nordkalk, 2010a). Nordkalk is therefore presently applying for 
permission to start a new quarry, Bunge, close to Klinthagen.   
 
The Limestone at Klinthagen is a heterogenic sedimentary rock type, which originates 
from coral reefs and other sea-living life forms living more than 400 million years ago. 
This has caused the quarry, of about 180 hectares, to be constituted by lens-like reef 
bodies reaching up to 200 meters in length, 70 meters in width and 20 meters in depth. 
Every reef body is by itself composed by layers of rock originated from different life-
forms, which are also mixed with clay materials and eroded reef fragments. To view the 
list with limestone types represented at Klinthagen, see Appendix IV. The information 
in this paragraph was obtained from Nordkalk (2010b). 
 
During a visit at the quarry in the middle of November the stratified nature of the rock 
was noticed, which also is visible in the picture (Figure 1).  
 

 
Figure 1 Picture overlooking a part of the Klinthagen quarry, notice the stratified rock composure. The 
rock wall is about 15 meters in height.  
 
The Klinthagen limestone is known to be a product of high quality with low levels of 
contaminants, such as sulphur, and a low tendency to break at high temperatures, which 
is rather rare and of great value to the iron and steel industry. If the areas of high quality 
may be mapped and therefore more efficiently extracted it could reduce the impact on 
the environment at future locations and increase quarry efficiency.  
 
Using multivariate statistics to analyse the data from the Klinthagen quarry valuable 
information to improve future quarry operation may be found. Multivariate statistical 
analysis is mainly used when large datasets containing many variables are evaluated. 
 
The Klinthagen quarry location may be viewed in Figure 2. 
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Figure 2 Klinthagen limestone quarry at Gotland. The dotted line represents the area not yet quarried 
(Karlsson, 2008) Printed with permission from Lantmäteriverket (I 2010/0058). 
 
There are several studies using multivariate methods principal component analysis 
(PCA) and in some cases partial least square projection to latent structures (PLS) on 
geological data. Of special interest are those studies, which contemplate the chemical 
structures and spatial decomposition of bedrock. Esbensen et al. (1987) presented a 
study linking chemical data from overburden to geophysical data as density, magnetic 
susceptibility etc. They used PCA in the initial steps of the analysis, moving on with 
PLS to predict the geophysical characteristics from the chemical structures of the 
overburden, followed by Kriging interpolation of the results to obtain a map showing 
the spatial distribution of predicted geophysics in the project area.  
 
Jimenez-Espinosa et al. (1993) used PCA to analyse the soil chemistry data of an area 
located in North-Western Spain. They let the first principal component represent six 
highly correlated components as a single variable. Jimenez-Espinosa then derived 
spatial images through Kriging analysis to visualise how this new variable was 
distributed in the area as to identify anomalties.  
 
In southern Portugal a quarry used for cement production, was examined for quality by 
a combination of multivariate and image analysis, see Almeida et al. (2004). Different 
ratios of chemical components are used by the company active in the area as quality 
parameters; this was the starting point of the analysis. Almeida et al. used data from a 
set of sparse bores, creating a large block model. They divided the area into smaller 
blocks, which characteristics were then estimated through PCA and a simulating 
routine; this resulting in a set of images visualising the distribution of the variables. The 

ub-
areas in the quarry (Almeida et al. 2004).  
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1.1 PURPOSE 
1. The main purpose of this thesis is to evaluate the possibilities of multivariate 

statistical analysis (PCA & PLS) and suggest improvements in order to enhance 
its applicability when applied to geochemical data.  

 
2. Investigate the possibility of predicting thermal disintegration index or sulphur 

contents from geochemical data. 
 

3. Evaluate the spatial interpolation method Kriging, when applied to PCA data 
from Klinthagen. 

 
4. Present a documentation of the multivariate techniques; PCA and PLS, and the 

theory of spatial interpolation by Kriging.  
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2 MULTIVARIATE ANALYSIS 
Multivariate analysis is a powerful tool used to deal with large datasets. The refined 
measuring techniques of today and possibilities to store large datasets often render 
datasets of immense magnitude. A vast amount of variables and objects in a dataset may 
make it impossible to distinguish trends, groups, outliers etc. Multivariate analysis 
consists of a variety of different methods of handling large matrix problems. In general 
all the methods subordinated to multivariate analysis are designed to simplify the 
interpretation of the data. However, depending on the objective of the analysis the 
methods used have to be chosen carefully.  
 
The objectives where multivariate techniques are most commonly used are described as 
(Johnson, 1992): 
 

 Data reduction or structural simplification 
 Sorting and grouping data 
 Variable dependency investigation 
 Prediction 
 Constructing and testing hypothesis 

 
The techniques of multivariate analysis have been used in many different fields of 
science such as physics, chemistry, medicine and social studies but also in economics 
and business studies (Johnson, 1992). Most interesting for this thesis however is its 
prior use in mining and prospecting (Eriksson, 2001).  
 

2.1 MULTIVARIATE NORMAL DISTRIBUTION 
Most multivariate analysing techniques are based on the assumption of a multivariate 
normal distribution of the dataset (Johnson, 1992). In this thesis the main analysing 
methods (PCA & PLS) are based on projections, which are not restricted by the 
distribution of the data (Johnson, 1992). However, if the data is approximately normally 
distributed it may simplify the analysing process. To have an understanding of the data 
distribution prior to modelling can be valuable when making decision during the 
analysis; therefore it is a basic step of data analysis to determine the distribution.  
 
In the univariate case, the samples of one variable are studied to evaluate the probability 
of a certain outcome if a new sample was to be taken. The probability is calculated from 
the normal distribution function, which forms a bell-shaped curve with maximum peak 
at the mean of the variable. Depending on the standard deviation of the samples the 
curve will be more or less stretched towards the edges. The area under the curve 
describes the probability of a sample to be within a certain interval. The normal 
distribution is given by: 
 

2//

2

2

2
1)( xexf   x     (2.1) 

 
where  is the standard deviation and µ is the mean.  
 
In the multivariate case the probability is described by the multivariable normal 
distribution function (2.2), which is analogous with the univariate function (Johnson, 
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1992). The function will describe a p-dimensional surface (Figure 3), where p is the 
number of variables included. To evaluate the probability, the volume under the surface 
over a region formed by intervals has to be determined (Johnson, 1992). Analogous to 
the univariate case the standard deviations and the covariance affect the shape of the 
surface greatly. When the dimension exceeds two, p > 2, it is hard to obtain a 
satisfactory graphical illustration. The multivariate normal distribution is given by: 
 

2/
2/12/

1

2
1)( XXX ef p      (2.2) 

 
where p is the dimension, X is a matrix with p 

is a vector of expected values for each variable in X. 
 
 

 
Figure 3 A graphical representation of a two dimensional normal distribution, where the variables 
variation is the same and no correlation occur. In the top left corner the distribution is shown as contours 
from above. 
 
If it is concluded that a dataset has a multivariate normal distribution the following 
stands true (Johnson, 1992): 
 

 Linear combinations of components of X are normally distributed 
 All subsets of the components of X have a (multivariate) normal distribution 
 Zero covariance implies that the corresponding components are independently 

distributed  
 The conditional distributions of components are (multivariate) normal 

2.2 MULTIVARIATE PROJECTION METHODS 
Projection techniques deal with three aspects of the analysis: data overview, 
classification and discrimination and regression modelling (Eriksson, 2001). The 
analysing procedure often contains all of these three aspects, starting with an overview, 
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moving on with classification and discrimination and finally approximating a model 
predicting one or more of the variables involved (Eriksson, 2001).  
 
Principal component analysis (PCA) and partial least square projection to latent 
structure (PLS) are both multivariate projection methods.  
 
PCA applied to the entire dataset will provide an overview of the variables and 
observations to be analysed. From this overview it is possible to extract information 
about the relations between observations, groups of observations and deviating 
observations. Other important information, which PCA may reveal are trends and 
shifting in the data. The overview also contains information on the correlation of the 
variables and how the variables are connected to the observations. 
 
If the initial PCA shows distinguishable groupings in the data, this stresses the question 
of classifying observations. It may be necessary to perform additional PCA for each 
group separately in order to obtain further knowledge about groups and their 
characteristics (Eriksson, 2001). These new PCA-models or class-models provide the 
possibility to classify new observations. However, should a new observation prove not 
to fit any of the established classes, this becomes an interesting sample and will need to 
be examined more closely.  
 
The PLS technique may make it possible to achieve a model able to predict a certain set 
of variables as responses to a set of new observations, which is desired. This is often the 
main objective of the data analysis. The model provides the opportunity to study how 
the observations affect the responses and how the responses correlate (Eriksson, 2001). 
When applying PLS to a dataset, it is important to separate causality from correlation. A 
causative relationship between observation and response means that a change in the 
observed variable causes the response to change, whereas for a correlation the change in 
the observed variable and the response may in fact be caused by another unknown 
variable and the observation and response are simply mutually affected.  

2.3 PRINCIPAL COMPONENT ANALYSIS 
Principal component analysis mainly tries to represent high dimensional data in a space 
with reduced dimensions (Jolliffe, 1986). The method could be described by a rotation 
of the axes as to find new variables, which represent the variability in a least square 
sense in the data to the highest degree (Eriksson, 2001). The new variables are called 
principal components and are calculated so that the first component represents the most 
variance and the second represent the second most variance and so on (Jolliffe, 1986). 

2.3.1 Computing Principal Components 
Principal components may be calculated from either the covariance matrix or the 
correlation matrix depending on the problem, however the manner of determining are 
the same. Below, the principals for calculating the components from the covariance 
matrix are described.  
 
Consider a matrix X with n observations of p variables. The principal components are 
defined by seeking the linear combinations, which maximises the variance (Johnson, 
1992). This is done by studying the sample covariance matrix, S, by respect to 
eigenvalues and eigenvectors (Johnson, 1992). The sample covariance matrix is 
calculated by: 
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XXS
1

1
n

         (2.3) 

 
where n is the number of observations. 
 
The eigenvalues of the sample covariance matrix represent the variation in the direction 
of the corresponding eigenvector (Johnson, 1992). Since the matrices are normally large 
the eigenvalues could be calculated with the power method or the QL- algorithm 
(Jolliffe, 1986). When the eigenvalues have been calculated they may be ordered by 
decreasing number. The first principal component is chosen as the eigenvector 
corresponding to the largest eigenvalue. 
 

Xey 11          (2.4) 
 
where y1 is the first principal component, e1  transpose of the normalised 
eigenvector corresponding to the largest eigenvector and X is sample data matrix. The 
values of y1 are called scores and represent the observations of X projected onto the 
new axis with the coefficients of e1. It should be noted that the principal components are 
to be orthogonal and therefore there should not be any covariance between the 
components (Johnson, 1992). Obvious from the calculation method PCA is sensitive to 
scaling, hence the sample data matrix is often centered and normalised before these 
operations, that is to say the means are subtracted from the observations and vectors are 
adjusted to be of the same length (Eriksson, 2001). The normalisation is often done by 
dividing the vector by its standard deviation (Eriksson, 2001).  
 
If the procedure is followed through to the last component all of the variance in X will 
be accounted for (Johnson, 1992). The eigenvectors will form a matrix A containing the 
directions of all the orthogonal principal components. The scores of the observations for 
all the components may be expressed as (Jolliffe, 1986): 
 

XAY          (2.5) 
 
Another, more direct approach for calculating the principal components is obtained 
through singular value decomposition (Jolliffe, 1986). This states that the sample 
matrix, X, can be written as 
 

AULX          (2.6) 
 
The decomposition is based on finding eigenvalues and eigenvectors to the matrices 

 (Golub, 1965)
 (Golub, 1965). Considering X 

being a matrix with n observations and p variables implies that the dimensions of U and 
A should be (n × n) and (p × p) respectively. The matrix L is diagonal with the singular 
values of X as elements. The singular values are the square roots of eigenvalues to 

 (Golub, 1965). The elements of L are normally ordered as decreasing 
from the left and the dimensions are (n × p). The sample matrix X is often rectangular, 
either more observations then variables or vice versa, therefore follows that L will be 
filled with zeroes to reach desired dimensions (Golub, 1965). 
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The column vectors of U and A are determined under the constraint of orthonormality, 
which implies: 
 

IUU          (2.7) 
 

IAA          (2.8) 
 
Equation (2.6) together with (2.8), provides the opportunity to multiply A from the 
right. By this follows that 
 

ULXA          (2.9) 
 
Comparing this with the result in (2.5) it is obtained that: 
 

ULY          (2.10) 
 
It is now possible to see that the singular value decomposition performed in this manner 
provides both the coefficients of the principal components in the matrix A and the 
scores projected to the components in the matrix UL. To link the results to the earlier 
discussion of principal components retrieved from the sample covariance matrix, it 
should be noticed that the singular values of X is in fact the square roots of the 
eigenvalues of the sample covariance matrix multiplied by (n-1) (Jolliffe, 1986). 

2.3.2 Geometrics of PCA 
When faced with a sample matrix X with n observations and p variables, the 
observations form a swarm of points in a p-dimensional space (Figure 4) (Eriksson, 
2001).  
 

 
Figure 4 Point swarm in three dimensional space. 
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The first steps of the PCA will cover the scaling and centering of the points, which will 
standardise the impact of each variable variance and move the origin of the axes to the 
mean value. These steps will then be followed by the computing of the first principal 
component (PC) and the projections of the observations, the scores. The first PC is, as 
earlier explained, an axis in the direction representing the variance of the data to the 
highest degree (Figure 5).  
 

 
Figure 5 Centered point swarm with two principal components in three a dimensional space. 
 
However, the scores of the first PC alone are often not enough to gather a sufficient 
understanding of the data, therefore a second PC is inserted in the data swarm, which 
represents the second highest degree of variance. This is sometimes continued by a third 
and fourth PC but the fraction of variance described decreases for each PC calculated, 
thus also the correlation to other variables. Normally, the scores are viewed in 2-
dimensional plot over the first PC and any of the additional components. This can 
geometrically be described as inserting a plane into the point swarm, and projecting the 
observations onto it (Figure 6 & Figure 7).  
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Figure 6 Plane inserted in the point swarm created by the PCs. 
 

 
Figure 7 Projection of observation onto the plane. 
 
The plane with projected observations is called a score plot, (Figure 8). The score plot 
reveals information about the observations such as groups, trends and outliers; it is often 
desired however, to relate the scores to the original variables.  
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Figure 8 Score plot showing the projected observations, where the cir
percent confidence interval. 
 
A way of viewing these relations is to examine how the plane is inserted into the 
original p-dimensional space, which is revealed by studying the coefficients of the 
principal components (Esbensen et al., 1998). The coefficients are called loadings, 
simply because they show how strongly a variable influences the PC. Geometrically the 
loadings are defined as cosine of the angle, , from the variable axis to the PC (Figure 
9) (Eriksson, 2001). 
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Figure 9 Angles from variables to first PC; showing how the component is inserted in a three dimesional 
space. 
 
The loadings of two components are displayed in a loading plot (Figure 10), showing 
the variable correlation and how they affect the PCs. Variables far from the origin have 
a greater impact on the PCs opposed to those closer to origin. Variables close to each 
other may be positively correlated, and those on opposite sides of the origin may be 
negatively correlated (Esbensen et al., 1998).  
 
Comparing the score plot with the loading plot is very effective since they complement 
each other. The directions in the plots are the same, which implies that if observations in 
the score plot are situated close to the location of a variable in the loading plot it is 
likely that these observations are affected by this variable (Eriksson, 2001).  
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Figure 10 Loading plot showing variables relations. 

2.3.3 The PC-model 
A PC-model is an attempt to describe the variance of a sample data matrix X in an 
effective and simple way. It should be noticed though that reducing the dimensions 
comes with a cost of lost information. The losses are described as noise in the matrix, E. 
Assuming the data matrix X has been centered by subtraction of mean values and 
normalised; the resulting data matrix is denoted as Xsc. The data may then be written as: 
 

EXsc          (2.11) 
 
where E is the noise, which in this case accounts for the entire variance of the data. 
Equation (2.11) is sometimes referred to as the zero component model. 
 
Computing the first PC will provide a vector of scores, t1, and a vector of loadings, p1. 
The model can then be described as (Esbensen et al., 1998): 
 

111 EptXsc         (2.12) 
 
where E1 is the new noise matrix, which in comparison to (2.11) has reduced by the 
variance accounted for by the first PC. 
 
The model work continues by adding one PC after another. However, for each PC 
added the fraction of variance explained by the new PC decreases. The gain of adding a 
PC should be considered as it brings with it the cost of a more complex model. With the 
final number of PCs decided the model may be expressed as: 
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EPTXsc           (2.13) 
 
where T is formed by the score vectors, ti, and P consists of the loading vectors, pi. The 
index, i, ranges from 1 to the number of PC decided upon. 
  
Since, the PCs do not account for all the variance in the data; the matrix E represents an 
important and informative part of the model, which reveals how the observations and 
variable deviate from the model. Geometrically the noise is the distance from an 
observation to the plane spanned by the PCs (Figure 11).  
 
 

 
Figure 11 The noise (residuals) is the distances from the observations to the projections on the plane. 
 
These distances are called residuals and are the content of E. By plotting how each 
observation deviates from the model (Figure 12), it may be possible to identify outliers 
not spotted in the score plot (Eriksson, 2001). It may also reveal if there are shifts in the 
data (Eriksson, 2001).  
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Figure 12 The observation residual plot shows the distance from the observation to the model. 
 
Furthermore, plotting the residuals of a certain variable provides information on how 
well that variable is explained by the model (Eriksson, 2001). Often this is plotted in a 
cumulative manner (Figure 13), by adding the fraction of the residuals accounted for by 
a principal component to the next (Eriksson, 2001). In this way it is possible to 
understand which variables and to what extent they are explained by each PC.  
 

 
Figure 13 Variable residual plot, the left bar shows residual and the right shows how well the variable is 
predicted against a validation set. 
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The decision on number of PCs to use is a complicated matter. Examining the residual 
decrease provides a good guidance on how many to choose. The total residual variance 
is expressed by (Esbensen et al., 1998): 

n

i
itot ee

1

22    i = 1, 2, ..., n     (2.14) 

 
where e2 is the squared residuals of the observations, 2

tote is the total residual variance 
and n is the number of observations. 
 

2.4 COMMON MULTIVARIATE REGRESSION METHODS 

2.4.1 Multivariate Linear Regression and Principal Component Regression 
In data analysis response prediction is often done by some regression method. The 
simplest and most commonly used is the univariate linear regression, bxay  
(Esbensen et al., 1998). In the multivariate case the corresponding technique is called 
MLR (multivariate linear regression), which fits a linear combinations of several 
variables, x1, x2, ..., xn, to describe the response, y (Esbensen et al., 1998).  
 

fxbxbxbby nn...22110       (2.15) 
 
where bi are the regression coefficients, xi are the observed variables and f is the factors 
not included in the model and noise. 
 
The coefficients bi can be estimated from the least square approximation: 
 

yXXXb 1         (2.16) 
 
where the vector y contain the observed values of the response.   
 
In equation (2.16) the limitation of the MLR is revealed. The least square estimate 

close to being singular i.e. containing any co-linearity or dependencies among the 
variables, xi (Esbensen et al., 1998). 
 
A way around the problem of co-linearity is to use a PCR (principal component 
regression) (Esbensen et al., 1998). The PCR is actually a combination of PCA and 
MLR. The data matrix, X, is first fully decomposed to a set of principal components, 
which by definition are orthogonally independent. A MLR is then performed on the new 
dataset to predict the response, y.  
 
The PCR comes with one great drawback: It is not certain that the chosen PCs, who 
represent the largest variances of the predictors, X, actually include the factors that 
control the response (Esbensen et al., 1998). To be forced to compute the entire set of 
PCs would cause the model to be more complex and advantage of reduced 
dimensionality would be lost. An attempt to ensure that the model describes the desired 
correlations from X to Y is done through PLS-regression. 
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2.5 PARTIAL LEAST SQUARES REGRESSION 
The PLS regression uses the variance information stored in the response and then 
applies this when decomposing the X matrix in PCs. This manner of performing the 
decomposition implies that the variance in the responses, Y, will be explained more 
efficiently then with a PCR in Section 2.4 (Abdi, 2003). PLS may be used on either a 
single variable response or a block of several response variables.  
 
Decomposing the matrix of predictors with the help of the information stored in the 
responses results in a shift of directions of the PCs compared to those of a PCR (Geladi 
& Kowalski, 1986). PLS decomposes X into a set of scores, t, and loadings, p, and at 
the same time describes the response, Y, as a set of scores, u, and weights, c.  
 

EPTX           (2.17) 
 

FCUY          (2.18) 
 
where T is as before the score matrix of X and P the loading matrix. The matrices U and 
C contain the scores and weights from the decomposition of Y. E and F are the residuals 
not described by the model.  
 
During the decomposition, the structure of Y is allowed to influence the decomposition 
of X by letting the Y-scores, u, be a part of the forming of the X-scores, t; this forming 
an inner relationship as: 
 

kkk tbu  k = 1, 2, ..., n       (2.19) 
 
where bk is a regression coefficient and n is the number of observations. 
 
It should be mentioned that equation (2.19) is a linear relationship, which is the 
simplest, but not necessarily the best. There are ways to account for non-linearities by 
replacing equation (2.19) with relations of a higher order or extending X with for 
instance squared or cubic terms (Björk, 2007). If the inner relationship equation (2.19) 
is included in the model a possibility to estimate the responses, Y, from the scores of X 
is presented as (Abdi, 2003): 
 

FCTBY          (2.20) 
 
where B is a diagonal matrix with the regression coefficients on the diagonal and Y  
represents the estimate of Y. 
 
The prediction of Y may also be expressed as a relation directly to X; this is done by 
using W* instead of W, which connects back to X instead of the residuals of X. Then 
the estimate is written as (Eriksson, 2001): 
 

XBY PLS          (2.21) 
 
where; 1WPWBPLS  
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BPLS is called the PLS regression coefficient matrix and is useful in interpretation of the 
model (Eriksson, 2001). It shows how each predicting variable is contributing to the 
response. 
 
Geometrically, PLS describes a plane or hyper-plane in the space spanning X (Wold et 
al., 2001). However, the scores, t, of X and the weights of Y, c, indicate directions, in 
this plane, with highest correlation to Y (Figure 14), which performs a link between the 
predictors and the responses (Wold et al., 2001). 

 
Figure 14 The line shows the direction with highest correlation to Y in the plane formed by two PLS 
components. 
 
PLS is an iterative method calculating one PLS component at the time. Starting the 
algorithm the matrices X and Y are considered as residuals, E0 and F0 respectively; then 
for each calculated component its contribution to the residuals is subtracted (Abdi, 
2003). The sizes of residual matrices are often measured by the total sum of squares, 
SSE and SSF. They serve as a measurement of how much of the residuals are explained 
by each component (Abdi, 2003). However, the risk of over-fitting the model is severe 
and cross-validation may therefore be more reliable when choosing the number of 
components (Wold et al., 2001). The aim is to achieve a model with the smallest 
possible residual matrix, consisting of as few PLS components as possible. 
 
The algorithm of PLS is performed as (Wold et al., 2001): 
 

1. istart yu  starting Y-score vector 
2. uuuXw /  which calculates the weight vector (directions) in X for the score 

vector, u.  
3. w should be normalised as 1w  
4. Xwt  computes the corresponding score vector, t, of X. 
5. tttYc /  determines the weight vector, c, of Y. 
6. ccYcu /  calculates the updated score vector, u. 
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7. If newnewold ttt / , where  defines the tolerance limit of convergence. If it 
has not converged: return to step 2, otherwise proceed two step 8. 

8. tttXp '/  determines the loading vector. 
9. utb   computes the regression coefficient 
10. ptXX  subtracts the contribution of the scores and loadings from the 

residuals 
11. ctYY b  deflates Y. 

Restart to calculate the next PLS component. 
 
The above algorithm is one of the simplest for PLS regression and is called NIPALS 
(Wold et al., 2001). There are other alternatives derived for different shapes of data 
(Wold et al., 2001). For instance the NPLS deals with matrices of more than 2 
dimensions e.g. matrices of cubic form (Björk, 2007). 
 
As with PCA, PLS is also closely related to singular value decomposition (Abdi, 2003). 
It can be shown from the algorithm that the weight vector, w, is the first right singular 

weight vector, c, is the first right singular vector (Abdi, 
2003). The first score vector, t, may be calculated as the first eigenvector of the matrix 

score vector Abdi, 2003). 
This may be repeated to retrieve following score and weight vectors by using the 
deflated matrices (Wold et al., 2001).  

2.5.1 Interpreting and Analysing the Model 
The characteristics of the PCA model may be analysed from the scores, loadings and 
residuals; while the interpretation of a PLS-model is mainly done from the weights, 
regression coefficients and VIP (variable influence on projection) (Eriksson, 2001).  
 
As with PCA the score plot is a tool to identify outliers and trends in the model 
(Eriksson, 2001). The scores from the X and Y blocks may be plotted separately to 
reveal the model structure of each block, but also the score from X may be plotted 
against the corresponding score vector in Y (Eriksson, 2001). This enables the 
possibility to identify non-linearities between X and Y (Figure 15), which may indicate 
the need for transformations of the data.  
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Figure 15 The plot of the scores from X and Y projection, a tool to discover non-linear relationship. 
 
The residuals also provide information about the model. For instance the size of the 
residuals could be viewed as an indication on model quality (Wold et al., 2001). It is 
also possible to distinguish moderate outliers, who could not be identified by the score 
plot, and to examine how much of the variation in the variable is explained by the 
model (Eriksson, 2001). This is done in the same manner as with the PCA described in 
Section 2.3.3. 
 
Pressing on with analysing the model; the first tool is to analyse the weights of the 
predictors and the responses. The weights are plotted either separately for the predictors 
and responses or jointly, where the latter shows how the predictor variables affect the 
responses, and the separate plots displays how the responses or predictors relate to each 
other (Eriksson, 2001). 
 
Studying the sizes and directions of the PLS regression coefficients; it is possible to 
distinguish how strong impact the predicting variables has on one response variable 
(Eriksson, 2001). This is visualised by a bar chart showing the size and direction with 
the chosen confident interval (Eriksson, 2001). In accordance to this there will be one 
chart for each response (Figure 16). 
 



 21 

 
Figure 16 The PLS coefficient plot displays how the predicting variables affect the response. 
 
Variables influence on projection (VIP) is a measurement of how great the importance 
of a predicting variable is to the entire model (Wold et al., 2001). It takes into account 
both how great the variable influences the representation of X and its importance in 
estimating Y (Wold et al., 2001). For each model, there is only one vector representing 
the VIP values, which makes it easy to overview. The VIP value is calculated as: 
 

A

A

a
aaakAk SSYSSY

KSSYSSYwVIP
01

1
2      (2.22) 

 
where A is the number of PLS components, SSY is the sum of square from the residual 
matrix of Y, which represents the explanation and K is the number of predictor variables 
(Eriksson, 2001). 
 
Equation (2.23) shows that the VIP values are always positive and that the sum of all 
the VIPs is equal to the number of predictor variables, which further implies that 
variables with greater VIP values than one has the largest influence on the model. This 
may be visualised in a VIP bar chart (Figure 17).  
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Figure 17 The variable importance plot shows how much a variable affects the model. 

2.6 MULTIVARIATE SPATIAL INTERPOLATION 
The two different interpolation methods considered in this thesis are described below. 
Kriging, the more complex of the two, takes into account how fast the value changes in 
the field. The other method, called inverse distance weighted (IDW) interpolation, only 
considers the distance between points. 

2.6.1 Semivariogram 
The semivariogram is a function describing the spatial variance in a field (Cressie, 
1991). In other words it may be considered as an expression of the spatial dependency. 
Supposing the variations in the field are not completely stochastic, the variance is likely 
to increase with distance, i.e less dependency is visible (Figure 18). Calculating a 
semivariogram from spatial sample data is done by (Cressie, 1991): 
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h       (2.23) 

 
where njihsssshN jiji ,...,1,;:),()( , i.e. the number of observations within 
the same relative distance to each other, and Z is the observations. It is easy to see the 
resemblance with the estimator of variance.  
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Figure 18 Showing an example of a semivariogram, with a fitted model. Notice how the variance 
increases with distance (Clark, 2001). 
 
The variations in the field often depend on the direction, which is called anisotropy 
(Cressie, 1991). For instance the semivariogram in east-western direction may differ 
from north-south, thus the calculations are commonly performed separately for each 
direction. This may also be performed in different ways either as only observations in a 
certain direction, for instance east-west or as observations within a certain angle of 
tolerance, e.g. all observations between 45 degrees north and 45 degrees south of the 
east-western line may be included. 
 
When a semivariogram has been estimated from the empirical data a mathematical 
model is fitted to approximate the function, There are a number of different models 
commonly used for this (Cressie,1991); however, only the exponential model, which 
was used in this thesis will be described here. The model is given by: 
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0,0
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h
h a

h       (2.24) 

 
where c0 is the nugget effect most likely caused by measurement error and microscale 
processes (Cressie, 1991). Often the experimental semivariogram does not start at zero 
but has an offset called nugget. The model converges towards 10 cc . The distance is 
described by h and a is called the range (Cressie, 1991).  

2.6.2 Ordinary Kriging 
The spatial interpolation or prediction technique evaluated in this thesis is called 
Ordinary Kriging. It allows the mean value to vary throughout the field, but assumes a 
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constant mean locally in a smaller sub-field or neighbourhood (Bohling, 2005). The 
spatial interpolation is denoted as (Cressie, 1991): 
 

n

i
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)(*)( s         (2.25) 

 
where *)(sz  is the value estimate at the spatial location s*, i are the interpolation 
weights specific for the location s* and )( isZ  are the observations at the known 
locations si.  under the constraint of: 
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The basis of determining the interpolation weights is the semivariogram model, which 
supplies the semivariance at the locations to be estimated. The weights may be 
calculated by solving the system (Cressie, 1991): 
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 (2.24) when the distance 

between the two locations are inserte. 
last row and column of ones ensures the constraint in equation (2.26). The Lagrange 
parameter is also used when calculating the prediction error, which is given by (Cressie, 
1991): 
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where  

*))(*)(var(2 szszOK        (2.29) 
 
A well modelled semivariance is very important. Without a thorough investigation to 
obtain a satisfactory semivariogram the results may not be reliable (Cressie, 1991). 

2.6.3 Inverse Distance Weighting 
The inverse distance weighted interpolation does not consider how the distance is 
connected to the relationship between observations. It focuses instead only on the 
distance and is given as (Shepard, 1968): 
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where d(s*,sk) is the distance between the known observation at location sk and the 
unknown at location s*. The exponent, p, is called a power parameter and was for this 
thesis set to two. 
  



 26 

3  MATERIAL AND METHOD 
The modelling could be divided into four different parts all related to the multivariate 
methods described in the theory chapter. However, these four parts could also be 
subordered into two separate areas; one dealing with the data structure, relations 
between variables and prediction; and the other using spatial interpolation to overview 
the spatial distribution.  

3.1 DATA DESCRIPTION 
Nordkalk uses two different sampling methods; diamond drill core and drill cuttings. 
The chemical data from diamond drill cores has been collected from a congregated 
sample of a three meter drill core. This could be viewed as the mean chemical 
composition of the three meter core column. From the same core, a thermal 
disintegration test has been performed. During the diamond core drilling procedure the 
sample is continuously rinsed from drill cuttings by water. This causes soft parts of the 
rock, such as clay, to be rinsed away, which affects the analysis results.  
 
The drill cuttings have been gathered, while drilling to place the explosives. Also in this 
case the analysis has been performed as mean samples over three meters (most cases, 
deviations occur). A problem with these analyses were that the depths of the samples 
only were approximately correct, which adds a spatial uncertainty to the data. Opposed 
to diamond drilling there is no rinsing present with this method.  
 
There were three different datasets. Two sets containing chemical data from drill 
cuttings. The third dataset originated from diamond drill cores, which were analysed 
with respect to both chemical components and the thermal disintegration index. The 
quarry has been exploited in two levels. The drill cuttings datasets are each originated 
from one of these levels and the diamond core drill covered the depth of both levels in a 
single dataset (Figure 19). In all datasets the chemical component were given as ratios 
in percent. The chemical components in the data were: Al2O3, CaCO3, CaO, Fe2O3, 
K2O, MgO, Mn2O3, MnO, Na2O, P2O5, S, SiO2 and TiO2.  
 
The physical parameter, thermal disintegration index, measures how resistant the stone 
is to thermal strain. In the analysis the stone is crushed into a 5  10 mm fraction and is 
slowly exposed to rising temperature. When the test is finished the disintegrated ratio of 
the stone is measured. A high index indicates low resistance. 
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Figure 19 Illustration of how the datasets are represented in the field. 
 
In Figure 20 the three most commonly observed problems in the series plots are encased 
in red circles: outliers, rounding errors and zeros. It should be emphasized that this is 
not a time series, but 3-dimensional spatially distributed data; hence it is probably not 
possible to determine trends, if present, from this plot. Outliers should also be treated 
with caution since it may not be obvious to see if nearby samples support the sample or 
not.  

 
Figure 20 An example of a variable plotted separately and the three most commonly occurring problems: 
outliers, missing values and rounding errors. 
 
The zeros in the data were concluded to be originated from missing analysis (Fjäder, 
personal communication, 2009); a problem mainly referring to variables considered to 
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be of low interest. A few variables also contained values set to minus one. These were 
concluded to be referring to analysis not reaching the limit of detection (Fjäder, personal 
communication, 2009). 
 
The distributions of the separate variables were determined to be either positively or 
negatively skew, and may not be considered as normally distributed. In Figure 21 an 
example of the distributions in the dataset is displayed. 

 
Figure 21 The positive skew distribution of the thermal disintegration index. 

3.2 DATA PREPERATION 
The immediate problems with the data were presented as: outliers, rounding errors, 
missing analysis and non-normal distribution. Since the PCA is a powerful tool to 
identify outliers, these were not dealt with in the data preparation, but noticed. The 
rounding errors were accepted as an existing problem, which had to be considered when 
analysing the results. To prevent the zeros and the minus ones from affecting the 
analysis, they were replaced by missing values.  
 
Since the variables were to be used in PCA and PLS, which are considered to be robust 
towards deviations from normality, transformations to improve normality were, strictly 
speaking, not needed. However, logarithmic transformations were in some analysis used 
to shift the variables to appear more normal. 

3.3 DATA STRUCTURE 
This modelling part forms the foundation in the efforts to predict the thermal 
disintegration index and sulphur content from the geochemical data. While predicting 
sulphur from the drill cuttings may be considered quite trivial, thermal disintegration 
index on the other hand proved more complex. Perhaps not so surprising since thermal 
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disintegration index is a geophysical property, which may not have any correlation with 
the geochemical composition.  

3.3.1 Data Overview 
The preliminary step to obtain an overview was to calculate an overall PCA model of 
the entire diamond core dataset. To start up the modelling the data was imported to 
SIMCA-P, which was used to calculate all the models based on multivariate analysis. A 
first PCA model was computed for diamond core dataset and several outliers were now 
excluded.  

3.3.2 Levelled Data Overview 
Since the data is distributed over three dimensions the data was sorted according to 
depth and modelled by PCA separately for each level. Outliers were excluded 
continuously during the modelling, but cautiously not to overfit the models. The 
layerwise models were compared to the other layers and to the overall model. 

3.3.3 Transformed PCA 
Since all variables were determined non-normal, logarithmic transformations with an 
offset were applied.  

3.4 PLS PREDICTION 
In order to predict the thermal disintegration index from the drill cuttings data a PLS 
model predicting thermal disintegration index from the diamond core data was 
computed. This was followed by an attempt to establish a connection between the drill 
cuttings data and the diamond core data, which would enable a possibility to predict 
thermal disintegration index directly from the drill cuttings.  
 
Since no correlation was found between thermal disintegration index and the sulphur 
content, a separate model was calculated to predict sulphur. No model from drill 
cuttings to diamond core data was needed for sulphur since it is measured in the drill 
cuttings. 
 
The PLS modelling was conducted both layerwise and for the entire diamond dataset. 
Sulphur and thermal disintegration index were modelled. In the dataset every fourth 
observation was excluded and used as validation set. A linear model was determined 
and then two different transformation approaches were used: first logarithmic as in 
section 3.3.3, and secondly by trying to determine a non-linear relation between thermal 
disintegration index and each variable separately, and inverting it.  

3.5 CORRELATION OF DIAMOND CORE DATA AND DRILL CUTTINGS 
DATA 

Analysis to establish a connection between drill cuttings data and diamond drill core 
data was conducted. Initially the measurements from the diamond samples were linked 
to the corresponding measurements from the drill cuttings analysis. The observations 
were sorted by X direction, then by Y direction and finally by depth from surface. A 
program connecting the observations by position and depth was written in Matlab. From 
the more than 3000 initial diamond observations and 5000 drill cuttings observations 
only 25 matching locations were found. These were imported to SIMCA-P and 
modelled. 
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3.6 SPATIAL INTERPOLATION 
By representing the data from the field in just a few principal components it is possible 
to obtain an overview of the field characteristics, presuming that the components are 
chosen carefully.  
 
An area with high spatial sample frequency was chosen as model data. The chosen area 
forms a rectangular field starting at point (3,000; 10,600) and ending in (3,750; 11,000) 
in the local spatial coordinates. 
 
A two component PCA model was constructed from the geochemical data of field A 
and the score vectors were exported together with their spatial reference to MATLAB. 
The interpolation method is sensitive to non-normality. This was dealt with by 
logarithmically transforming the input data before determining the PCA. The scores, 
which could be considered as the output data from the PCA showed near normal 
distribution. 
 
The semivariograms of the two PCs were calculated from the observations. Differences 
in variance occurring due to anisotropy were not considered, since the sample intervals 
were to large to support the analysis, i.e. isotropy was assumed.  
 
Exponential models were fitted to the semivariograms for both PCs. These models were 
later used in the calculations of the weights in the Kriging interpolation (Table 1).  
 
Table 1 Semivariance models used in Kriging interpolations 
PC Model equation  

1 01

0,0
);(

10 hecc

h
h a

h  
c0 =1,9 
c1=4,3 
a=160 

2 01

0,0
);(

10 hecc

h
h a

h  
c0 =1,07 
c1=0,32 
a=200 

 
The results from the Kriging interpolation were compared by terms of mean squared 
error (MSE) to an inverse distance weighted interpolation. About one fifth of the scores 
were excluded from the interpolations to serve as validation.  
 
The original data had the spatial frequency of 50 m in X-direction and 100 m in Y 
direction, and had the total length of 850 m in X-direction and 400 m in Y-direction. 
When the 15 validation points had been excluded each depth layer contained 65 
observations which were used in the interpolation. The interpolations were carried out 
with 170 points in X-direction and 80 points in Y-direction; a total of 13,600 points per 
layer. 
 
As a comparison the more trivial inverse distance weighted interpolation method was 
used. The weights were calculated as the inverse squared distance from the evaluated 
point. Points within a distance of 200 meters were included in the interpolation. 
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4 RESULTS 

4.1 DATA STRUCTURE 

4.1.1 Diamond Core Data Overview 
The first PCA model, which was calculated for the entire diamond core dataset, is 
presented by score plot (Figure 22) and loading plot (). The model was constructed by 
two principal components; together representing almost 76 % of the variance in data. 
The model showed a predictive power of about 62 %. 
 

 
Figure 22 The score plot of the diamond core dataset. 
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Figure 23 Loading plot of the diamond core dataset 
 
It is possible to see that the first component is strongly influenced by the relations 
between CaO, CaCO3 and SiO2, K2O, Al2O3, Fe2O3, TiO2, which are two groups, 
internally correlated and negatively correlated to each other. The score plot shows many 
deviating observations associated with high values in the second group mentioned 
previously. 
 
The dominating variables to the second PC are P2O5 and Mn2O3, which also seem 
closely related. Observations deviating in the second PC direction often seemed to be 
connected to high values in these two compounds.  
 
Sulphur and thermal disintegration index, which are of interest to control in the 
production does not seem to have any close correlations to other variables. The loading 
plot also shows thermal disintegration index, TS, to be situated quite close to the origin.   
The explanatory ratio of each variable is visualised in Figure 24, only about 20 % of 
thermal disintegration index was explained by the model. 
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Figure 24 The fraction of explained variance for each variable calculated from the residual size and the 
fraction of predicted variance calculated from an external validation dataset. 
 
Figure 24 shows that the variables closely related to the first PC were modelled and 
predicted well. The variables, which were described by the second component, although 
in some cases well fitted, seemed difficult to predict.  

4.1.2 Levelled PCA of Diamond Core Data 
The topmost two or three layers differed slightly from the deeper layers in structure, 
mainly related to the second PC. Relations between Mn2O3, P2O5 and sulphur varied in 
particular (Figure 25 & Figure 26). In general though, all PCAs much resembled the 
overview PCA of the entire set.  
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Figure 25 The loading plots of layer 1. 
 

 
Figure 26 Loading plot of layer 8. 
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Both the explained variance ratio and the predictive power increased to some extent 
towards deeper levels (Table 2). The layers are numbered from one starting with 
topmost layer. 
 
Table 2 The variance explained and validated by the models for each layer 
Layer Explained variance [%] Predictive power [%] Notes 
1 65.1  44.5   
2 70.9 52.2  
3 70.5 51.9  
4 76.5 62.9  
5 76.3 64.3  
6 76.0 61.0  
7 79.5 64.9  
8 78.7 64.5  
9 78.8 62.7  
10 80.8 59.5 Few values 
11 91.2 64.2 Few values, different 

structure. 
 
The variables thermal disintegration index and sulphur, which are to be predicted in 
later chapters by PLS, naturally are of high interest. How well the model for each layer 
explains these characteristics may be viewed in Figure 27. In Figure 28 the goodness of 
prediction for the layer models is shown. Similar plots for all variables and layers may 
be viewed in Appendix I. 

 
Figure 27 The explained variance fractions for sulphur and thermal disintegration index shown layer by 
layer.  
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Figure 28 The predicted variance fractions for sulphur (S) and thermal disintegration index (TS) shown 
layer by layer.  
 

4.1.3 Transformed PCA 
No modelling improvements were revealed, with the applied transformation. 

4.2 PLS PREDICTION 

4.2.1 Prediction from Entire Diamond Core Dataset 
A first attempt was made to create a model from the entire diamond core data, which 
predicted sulphur and thermal disintegration index at the same time. This model was 
modelled from centered and standardised data with no transformations. As mentioned 
earlier the data was not normally distributed, which is not necessary but desirable. The 
model consisted of five components describing 94 percent of the variance in the X 
matrix, while about 53 percent of the variance in the response matrix was accounted for. 
Sulphur was predicted quite well by the model, whereas thermal disintegration index 
was poorly predicted. Figure 29 shows how well the model predicts thermal 
disintegration index when compared to an external validation set. 
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Figure 29 Thermal disintegration index (TS) predicted values plotted against observed values. The 
straight line represents the PLS model. 
 
In the same manner the model predicting sulphur may be viewed in Figure 30. 
 

 
Figure 30 Predicted values for sulphur plotted against observed values. The straight line represents the 
PLS model. 
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When studying the variable importance plots and the PLS coefficients the thermal 
disintegration showed to be most influenced by silica, potassium and aluminium (clay 
minerals). High clay values pointed towards low disintegration index. Sulphur seemed 
strongly influenced positively by iron content.  

4.2.2 Prediction from Layered Diamond Core Data 
In the same manner as with the PCA further PLS models were calculated for each layer. 
They all showed great similarity in appearance with the models described in Figure 29. 
These models may be studied in detail in Appendix III. The prediction of sulphur 
seemed to improve when leaving the topmost layers. An example of this is visible when 
Figure 31 is compared to Figure 32. The prediction of thermal disintegration index on 
the other hand did not improve noticeably in any layer.  
 

 
Figure 31 Predicted values of sulphur plotted against observed values for layer 1 (0-6 m).  
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Figure 32 Predicted values of sulphur plotted against observed values for layer 4 (12-15 m). 

4.2.3 Transformed Predictions  
Neither of the two transformation approaches, logarithmic and linear relation to thermal 
disintegration index, displayed any modelling advantages. Although near normality was 
achieved in the first approach and improved linearity for some variables in the second, 
the transformations rather seemed to induce non-linearity to the models.   

4.3 CORRELATION OF DIAMOND CORE DATA AND DRILL CUTTINGS 
DATA 

The calculated PCA model consisted of four components, which explained 83 % of the 
variance in data. The predictive power in the model was weak, only 25 %. Figure 33 
shows the loading plot of the first two components, together accounting for almost 67 
percent of the variance.  
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Figure 33 Loading plot of the first two components of the diamond core drill and drill cuttings dataset. 
Variables starting with a lower case k, indicates variables from the drill cuttings. 
 
The observations from diamond drill core were mainly located in the second and fourth 
quadrant, whereas the drill cuttings observations were located in the first and third 
quadrant.  
 
When examining the third and fourth component some correlation between the variables 
of the drill cuttings data and the diamond core data may perhaps be noticed, but since 
only a small part of the variance in data were described by these component it is hard to 
decipher what this might indicate.  
 
The inner structures of each dataset were examined through individual PCA models 
fitted to the data. Both models were composed by two principal components. Figure 34 
shows how the variables are related to each other in the diamond drill dataset.  
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Figure 34 Loading plot of PCA model fitted to the diamond observations. 
 
The structure of the diamond samples were compared to the structure of the drill 
cuttings data (Figure 35). 

 
Figure 35 Loading plot of PCA model fitted to the drill cuttings observations. Observation No. 12 was 
excluded from the model. 
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The inner structure of the two sample types showed to be similar with respect to the first 
component. However, P2O5 related differently to the other components in the drill 
cuttings data compared to the relations in the diamond drill dataset.  
 
It was not possible to achieve any satisfactory PLS model to predict neither of the two 
sample types from the other.   

4.4 SPATIAL INTERPOLATION 
In Figure 36 the calculated semivariogram from the first PC is shown. 

 
Figure 36 Semivariogram from scores in the first PC. The solid line shows the experimental variance; the 
dashed line is the fitted model. 
 
Since the original samples were received as mean value of an entire 3 meter core 
column, a three dimensional interpolation was not possible. It allowed however to 
interpolate the horizontal spread. In Table 3 the mean squared errors are displayed and 
may be compared to the observed variance in the field.  
 
Table 3 shows how the error varies greatly depending on the layer and that the two 
methods were on most occasions quite similar in error. In most cases, the error of the 
models were less than the observed variability in the field.  
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Table 3 The mean squared errors (MSE) and the observed variance for each interpolation technique, PC 
and layer 
Layer PC MSE 

(Kriging) 
MSE (idw) Observed variance 

1 1 1.80 2.26 2.00 
2 0.21 0.21 0.31 

2 1 1.83 1.66 3.70 
2 0.49 0.43 0.54 

3 1 3.53 3.48 5.18 
2 0.59 0.61 0.43 

4 1 5.60 5.92 6.45 
2 0.30 0.22 0.78 

5 1 2.51 2.39 5.46 
2 0.35 0.30 0.72 

6 1 2.99 2.76 4.83 
2 0.48 0.52 0.42 

7 1 6.62 6.58 9.83 
2 0.66 0.57 0.57 

8 1 5.33 4.47 9.25 
2 0.66 0.56 0.65 

9 1 5.40 5.14 6.58 
2 1.07 1.10 0.74 

 
Every interpolation contains uncertainty, which could be considered as the real value 
variability from the interpolated value. As the distance from the observed location 
increases the uncertainty will also be larger. In Figure 37 it is visualized how the 
uncertainty or Kriging error varies over the interpolated field.  
 

 
Figure 37 The Kriging error of layer 5. 
 
It is clearly noticeable how the uncertainty is significantly smaller closer to the observed 
locations. Further on, from Figure 37 it is easy to see where the validation locations 
have been excluded and how missing observations in the upper right corner affects the 
interpolation variability; an area which in this case actually could be considered as 
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being extrapolated. It is important to remember that the Kriging error calculation 
demand accuracy in the semivariogram to be reliable. 
 
An example of what the interpolated field looks like is displayed in Figure 38. 
 

 
Figure 38 Kriging interpolation of layer 5 in the field. Red indicates the abundance of minerals connected 
to clay presence.  
 
As to illustrate and emphasise the differences between Kriging and Inverse Distance 
Weighted interpolation the same layer is shown in Figure 39 with IDW interpolation. 
Notice the more drastic changes.  

 
Figure 39 IDW interpolation of layer 5. 
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5 DISCUSSION 

5.1 DATA PREPARATION 
Many suspected outliers were found when examining the data one variable at the time. 
The main problem however, was to identify if the outlier had support from surrounding 
measurements. Perhaps this would have been easier to see if values were plotted as 
images layer by layer with accurate spatial relations. That would not include the 
surrounding samples in the third dimension, and therefore still exclude valuable 
information.  
 
Clarifying if a whole observation or only a single variable in the observation were 
deviating was not possible when data was examined as series or images. The outliers 
were ultimately left to be dealt with in the PCA, which has the advantage of being able 
to identify both deviations in entire observations and in single variables. However, the 
spatial problem is not solved by PCA. 
 
The organised patterns discovered in data, occurring in variables present in low 
quantities, were most likely originated from rounding and the limit of detection. This 
may be due to either the limit of detection of analysing instruments or the measurement 
take down by operator. With data stretching over a time period of over 30 years this 
may not be surprising although still important to avoid in the future, since the 
inaccuracies in data may inflict difficulties when modelling or analysing the data. 
 
Obviously during periods of the quarry operation some variables were not considered of 
importance; resulting in large areas of missing values. The consequence is that less 
information is included in the analysis. 
 
Cressie (1991) mentions that normal distribution is generally uncommon when 
analysing geochemical data. A possible explanation in limestone may be the composure 
of the analysed volume. The variability in different limestone types may cause the 
disturbance. Perhaps, the dominating composures are normally distributed, and smaller 
fractions of differently composed rocks shift the overall distribution from normality. An 
idea would be to consider samples originating from the same rock type separately to 
reduce the variability in data. 

5.2 DATA STRUCTURE 
The skew distributions observed during the univariate analysis were clearly visible in 
the PCA models. Deviating observations were mainly concentrated around the first 
principal component and inclining towards high positive values. This was probably 
related to the clay content in the sample. From the loading plots it was apparent that the 
clay minerals and calcium are negatively correlated, which indicates that these 
components share space.  
 
Phosphorous and manganese showed to have different relations to the other 
components, possibly due to the low amounts of these compounds in the rock, and the 
difficulties with measurements close to the limit of detection. Another explanation 
could be the crystal structure. It is known that sulphur for example is bound inside the 
calcite crystal, whereas clay minerals are rather situated in the fractures. Whatever 
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underlying reason which separates the two components, phosphorous and manganese 
are often present together.  
 
Of special interest during the analysis was to establish a relation between the physical 
characteristic thermal disintegration index and the chemical composition. However from 
the PCAs thermal disintegration seemed to have little in common with other 
components. The variable residual plots also proved this to be the case. Probably the 
chemical composition of the rock has very little to do with its resistance to 
disintegration at high temperatures. To better explain the mechanisms involved the data 
needs to be complemented with other parameters e.g. grain size etc.. 
 
When the analysis was continued to include layerwise PCA models a change in 
structure was noticed. Mainly sulphur, phosphorous and manganese were involved, 
which could be explained by a number of reasons. Perhaps the most plausible 
explanation may be that this was caused by the stratified nature of the rock. This may 
also be the explanation to the somewhat varying modelling results. One layer may be 
much more homogene compared to another depending on the ratio of samples in the 
layer originated from the same rock type. Since the present observations serve as an 
average value over a three meter drill core or three meters worth of drill cuttings the 
data becomes harder to characterise and valuable information may be lost. 
 
Another thought was that the differences may be caused by the age of the limestone or 
that the rock at the topmost twelve meters or so, which deviated in structure from the 
deeper layers, were perhaps formed in a different manner, under different conditions or 
in a different environment. Since limestone is originated from coral reefs it has to be 
considered that changes in the surroundings may affect the rock.  

5.3 PLS PREDICTION 
The predictive part of this thesis could be divided into two different categories, of 
course with connection to the two distinct responses, sulphur and thermal disintegration 
index. Category number one would involve finding a relationship between chemical 
composure and a physical characteristic. Category two involves determining a chemical 
component, with a slightly different behaviour, from the presence of other components.  
 
In the results presented in section 4.2.1 and 4.2.2 the thermal disintegration index 
showed not to be easily predicted from the chemical data. As suspected from the earlier 
PCA models, the lack of correlation became a problem during the PLS modelling. In the 
prediction plot in Figure 29 the thermal disintegration index appeared as if it may have 
some non-linear relation to the chemical components. Even though several different 
transformations were tried, nothing seemed to improve the relation significantly. The 
transformations rather induced non-linear behaviour in other variables and even shifted 
the models further from normality. 
 
The work with the PLS model for thermal disintegration index revealed that it may be 
connected to aluminium, potassium and silica, which are mainly related to clay 
presence. This could indicate that it is grain size or the rock structure rather than the 
chemical structure that affects the resistance to disintegration. Though it may seem 
trivial, a model to predict sulphur was also calculated and proved to be rather good. 
However, as with any model derived from sample data, some deviations were visible. It 
was interesting to see that the models noticeably improved when modelled in deeper 
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layers, a phenomena witnessed in PCA modelling as well. The explanation could be the 
same as discussed earlier with stratified rock and better representation in the samples 
depending on the rock type distribution in the layers. Perhaps the exceptionally poor 
prediction result from the top layer (0-6m), shown in Figure 31, may be due to the effect 
of exposure to the atmosphere. 

5.4 CORRELATION OF DIAMOND CORE DATA AND DRILL CUTTINGS 
DATA 

Correlation between the diamond drill core analysis and the drill cuttings analysis was 
not found. It should be remembered that since only 25 overlapping sample locations 
existed in the data, the analysis may serve at most as an indication of the difficulties 
involved when evaluating the sample results.  
 
In the model the principal components of highest variance seemed to be directed 
somewhere in between the variables of the drill cuttings and the diamond core samples. 
This shows that there are correlations between the two sample methods but also 
significant differences causing difficulties when trying to predict one from the other. 
Most likely the distinctions between the datasets were associated with the differences 
between sampling methods. Apparently these dissimilarities inflict noise on the system, 
which overshadows the correlations. It may be possible that the second component 
describes the distinctions between the drilling methods rather than correlation of the 
variables. 

5.5 SPATIAL INTERPOLATION 
A Kriging interpolation of the PCA scores was studied. The idea was to enable an 
overview of the field in one or maybe two variables only. This study should be 
considered as an evaluation of the method and its possibilities with the data at hand. 
 
Since the Kriging interpolation is based on the semivariogram, this introduces the first 
problem. In order to get an accurate semivariogram the data must be normally 
distributed and it is important that the samples include the changes in variability. This 
exhibits the need of careful planning when deciding how to distribute the observations 
spatially. In the data at hand the observations were often too wide apart. Only in the X 
direction could any actual variation change be witnessed.  
 
The second problem relates back once again to the semivariogram but is also closely 
related to the nature of the limestone. Kriging interpolation is based on how much the 
observations are thought to affect the interpolated point depending on their distance to 
it. However, since the limestone is stratified this could result in large sudden changes in 
structure over short distance. Should this be true the interpolation will deliver a poor 
result, whereas if it is not, the method is likely to work well. All in all these 
circumstances damages the reliability of the method.  
 
The results in this case, which were compared to the most commonly used spatial 
interpolation method, IDW, showed Kriging neither to be better nor worse. In most 
cases the mean squared error was about the same. It should be remembered though that 
an enhanced semivariogram could perhaps improve the interpolation. 
 
It was at first desired to carry out the interpolation in three dimensions, but since the 
data was sampled from the entire three meter column of diamond core this left no 
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possibility for interpolation in depth. Could this have been considered as discrete data, 
and not as mean over three meters, the semivariogram and model could perhaps have 
been improved and expanded to three dimensions.  
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6 CONCLUSIONS 

6.1 DATA OVERVIEW AND PCA 
The varying data quality, due to the long time period of collection, induces problems in 
the analysis. This is a complication hard to address retrospectively, hence it is important 
to take this into account in future measurements.  
 
Principal component analysis extracts information from the data efficiently and in this 
case emphasizes the importance of experimental design. In future exploring of 
limestone areas a more discrete manner of sample collection is advisable. The present 
sample method of three meter measurements should be removed in favour of point 
observations with as accurate spatial reference as possible. Preferably in an 
acknowledged coordinate system. Analysis taken at both predestined depths and in 
accordance to the variations of the rock type would enable more precise models and less 
skew distributions in the variables. 

6.2 PLS PREDICTION 
The predicting model was able to predict sulphur from the other components with rather 
good accuracy. The most important variable in the prediction was iron, which perhaps 
could serve as an indicator or guide when fast analysis are desired. Further analysis may 
be needed to develop this possibility. Improvements concerning measurement 
techniques mentioned earlier may enhance the results. 
 
In future analysis of the thermal disintegration, the physical factors may not be ignored, 
but rather emphasised in importance if reliable models are desired. Obviously some 
important information was not represented in the data, which caused the models to fail, 
when trying to predict the thermal disintegration. Results indicating that high clay 
content had a positive effect on the disintegration suggest that small grain size is 
desirable.  

6.3 CORRELATION OF DIAMOND CORE DATA AND DRILL CUTTINGS 
DATA 

Increased sample overlapping and enhanced sampling methods are needed in order to 
deal with the noise complication. A more discrete sampling method would probably 
also improve the results.  

6.4 SPATIAL INTERPOLATION 
The stratified rock causes trouble for the interpolations, thus more suitable sample 
collection or more complex interpolation techniques, perhaps considering geophysical 
data as well, would be needed to reach desired reliability.  
 
If a Kriging interpolation is to be used, the sample spatial frequency should be given the 
outmost attention in order to obtain an accurate semivariogram. The data used in this 
thesis was not distributed in a manner, which allowed a satisfactory semivariogram to 
be determined. 
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The results in the interpolation analysis showed that there is little to gain from 
performing the Kriging interpolation in favour of the less complex inverse distance 
weighted interpolation when faced with this kind of data. 
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APPENDIX I 

SCORE AND LOADING PLOTS; DAIMOND CORE LEVELED DATA  

 
Figure 40 The Score and loading plot of the first layer, 0-6 m. 
 

 
Figure 41 The Score and loading plot of the second layer, 6-9 m. 
 

 
Figure 42 The Score and loading plot of the third layer, 9-12 m. 
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Figure 43 The Score and loading plot of the fourth layer, 12-15 m. 
 

 
Figure 44 The Score and loading plot of the fifth layer, 15-18 m. 
 

 
Figure 45 The Score and loading plot of the sixth layer, 18-21 m. 
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Figure 46 The Score and loading plot of the seventh layer, 21-24 m. 
 

 
Figure 47 The Score and loading plot of the eighth layer, 24-27 m.  
 

 
Figure 48 The Score and loading plot of the ninth layer, 27-30 m.  
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Figure 49 The Score and loading plot of the tenth layer, 30-  
 

 
Figure 50 The Score and loading plot of the eleventh layer, 33-36 m. 
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APPENDIX II 

EXPLAINATORY PLOTS 
Plots for all PCA model modeled with two PCs; starting with layer No. 1 
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APPENDIX III 

PREDICTION VS OBSERVATION PLOTS 

TS 
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APPENDIX IV 
Bergartskoder: 
 
Vi arbetar med 5 st. huvudtyper av kalksten, samt en serie variationer och 
övergångstyper: 
 
S  Stromatoporoidékalksten 
K  Krinoidékalksten 
R  Revkalksten 
Fr  Fragmentkalksten 
M  Märgel 
 
 
SK  Växellagrande stromatoporoidé- och krinoidékalksten 
LK  Lerig krinoidékalksten 
AK  Arenitisk krinoidékalksten 
KFr  Krinoidékalksten med inslag av fragment 
SFr  Stromatoporoidékalksten med inslag av fragment 
LFr  Lerig fragmentkalksten 
LR  Lerig revkalksten 
MK  Mörk krinoidékalksten 
LMK  Lerig mörk krinoidékalksten 
LjK  Ljus krinoidékalksten 
J  Jord 
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APPENDIX V 
Base function of the Kriging interpolation 
clear all 
close all 
load BA; 
pos=levkrig(pos); 
xlag=170; 
ylag=80; 
x=pos(:,1); 
y=pos(:,2); 
lev=11; 
  
  
  
f=find(pos(:,4)==lev); 
x1=x(f); 
y1=y(f); 
  
z1=val(f,:); 
valid=round(linspace(1,length(x1),round(length(x1)*0.8))); 
valid=valid'; 
  
x=x1(valid); 
y=y1(valid); 
z=z1(valid,:); 
x1(valid)=[]; 
y1(valid)=[]; 
z1(valid,:)=[]; 
gamest=zeros(size(y)); 
  
for i=2:length(x) 
d(i)=isequal(x(i),x(i-1)); 
end 
f=[]; 
f=find(d==1); 
x(f)=[]; 
y(f)=[]; 
z(f,:)=[]; 
%[c01,c11,a1,type1,c02,c12,a2,type2] = semivar1(x,y,z); 
% [binc,sv,bin_array,svM,gamma_array,dist_array]=semivar([x 
y],z(:,1)); 
% [binc2,sv2,bin_array2,svM2,gamma_array2,dist_array2]=semivar([x 
y],z(:,2)); 
% plot(binc,sv,'*');figure;plot(binc2,sv2,'*'); 
  
[W1,we1,z,x,y,xest,yest,dx,dy]    = kriga([x 
y],1.9,4.3,160,'exp',z,xlag,ylag); 
[W2,we2]                = kriga([x 
y],1.07,0.32,200,'exp',z,xlag,ylag); 
  
[Zest1,zest1] = kriget(W1,z(:,1),xlag,ylag); 
[Zest2,zest2] = idw(x,y,z(:,1),xest,yest,xlag,ylag,200); 
[Zest3,zest3] = kriget(W2,z(:,2),xlag,ylag); 
[Zest4,zest4] = idw(x,y,z(:,2),xest,yest,xlag,ylag,200); 
[errK1]  = krigvar(W1,we1,xlag,ylag); 
[errK2]  = krigvar(W2,we2,xlag,ylag); 
  
[valpc1]=valet(zest1,z1(:,1),x1,y1,xest,yest); 
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[validw1]=valet(zest2,z1(:,1),x1,y1,xest,yest); 
  
[valpc2]=valet(zest3,z1(:,2),x1,y1,xest,yest); 
[validw2]=valet(zest4,z1(:,2),x1,y1,xest,yest); 
  
%% figure 
colormap(jet); 
imagesc(dx,dy,Zest1); 
title('Krig PC 1') 
colorbar;axis equal tight xy; 
xlabel('Local X');ylabel('Local Y'); 
  
figure 
colormap(jet); 
imagesc(dx,dy,errK1); 
title('err PC 1') 
colorbar;axis equal tight xy; 
xlabel('Local X');ylabel('Local Y'); 
  
figure 
colormap(jet); 
imagesc(dx,dy,Zest2); 
title('IDW PC 1') 
colorbar;axis equal tight xy; 
xlabel('Local X');ylabel('Local Y'); 
  
figure 
colormap(jet); 
imagesc(dx,dy,Zest3); 
title('Krig PC 2') 
colorbar;axis equal tight xy; 
xlabel('Local X');ylabel('Local Y'); 
  
figure 
colormap(jet); 
imagesc(dx,dy,errK2); 
title('err PC 2') 
colorbar;axis equal tight xy; 
xlabel('Local X');ylabel('Local Y'); 
  
figure 
colormap(jet); 
imagesc(dx,dy,Zest4); 
title('IDW PC 2') 
colorbar;axis equal tight xy; 
xlabel('Local X');ylabel('Local Y'); 
  
 %save(num2str(lev)) 
 
Calculating the weights of Kriging 
function [W,we,z,x,y,xest,yest,dx,dy] = 
kriga(pos,c0,c1,a,type,val,xlag,ylag) 
x=pos(:,1); 
y=pos(:,2); 
z=val;%  
% for i=2:length(x) 
% d(i)=isequal(x(i),x(i-1)); 
% end 
%  
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% f=find(d==0); 
% x=x(f+1); 
% y=y(f+1); 
% gamest=zeros(size(y)); 
% z=val(f+1,:); 
  
  
    switch lower(type) 
        case {'sph'} 
             for i=1:length(y) 
                dist=sqrt((x-x(i)).^2+(y-y(i)).^2); 
               
                f=find(dist<=a);    
                gamest(f,i)=c0 + c1.*(1.5.*(dist(f)./a)-
0.5.*(dist(f)./a).^3); 
                f=[]; 
                f=find(dist>a); 
                gamest(f,i)=c0+c1; 
  
            end 
            V=[gamest ones(length(y),1);ones(1,length(y)) 0]; 
  
            dx=linspace(3000,3850,xlag); 
            dy=linspace(10600,11000,ylag); 
            xest=[]; 
            yest=[]; 
            for i=1:length(dy) 
                for i1=1:length(dx) 
                    newxest(i1,1)=dx(i1); 
                    newyest(i1,1)=dy(i); 
                end 
                xest=[xest; newxest]; 
                yest=[yest; newyest]; 
            end 
%             [L,U]=lu(V); 
            we=[]; 
            for i=1:length(xest) 
                
                he=sqrt((x-xest(i)).^2+(y-yest(i)).^2); 
                f=[]; 
                f=find(he<=a);    
                he(f)= c0 + c1.*(1.5.*(he(f)./a)-0.5.*(he(f)./a).^3); 
                 
                f=[]; 
                f=find(he>a); 
                he(f)=c0+c1; 
                 
                he=[he;1]; 
                we=[we he]; 
                 
%                 b=L\he; 
%                 W(:,i)=U\b; 
%                 info=round(i/length(xest)*100); 
%                 disp(num2str(info)) 
            end 
             
            W=V\we; 
         
        case {'exp'} 
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            for i=1:length(y) 
                dist=sqrt((x-x(i)).^2+(y-y(i)).^2); 
             
                f=find(dist>0);    
                gamest(f,i)= c0 + c1.*(1-exp(-(dist(f)./a))); 
                f=[]; 
                f=find(dist==0); 
                gamest(f,i)=0; 
                 
            end 
            V=[gamest ones(length(y),1);ones(1,length(y)) 0]; 
  
            dx=linspace(3000,3850,xlag); 
            dy=linspace(10600,11000,ylag); 
            xest=[]; 
            yest=[]; 
            for i=1:length(dy) 
                for i1=1:length(dx) 
                    newxest(i1,1)=dx(i1); 
                    newyest(i1,1)=dy(i); 
                end 
                xest=[xest; newxest]; 
                yest=[yest; newyest]; 
            end 
  
%             [L,U]=lu(V); 
            we=[]; 
            for i=1:length(xest) 
                he=sqrt((x-xest(i)).^2+(y-yest(i)).^2); 
                 
                f=find(he>0);    
                he(f)= c0 + c1.*(1-exp(-(he(f)./a))); 
                 
                f=find(he==0); 
                he(f)=0; 
                 
                he=[he;1]; 
                we=[we he]; 
%                 b=L\he; 
%                 W(:,i)=U\b; 
%                 info=i/length(xest)*100; 
%                 disp(num2str(info)) 
            end 
            W=V\we;     
         
        case {'lin'} 
             for i=1:length(y) 
                dist=sqrt((x-x(i)).^2+(y-y(i)).^2); 
               
                f=find(dist~=0);    
                gamest(f,i)=c0 + c1.*dist(f); 
                f=[]; 
                f=find(dist==0); 
                gamest(f,i)=0; 
  
            end 
            V=[gamest ones(length(y),1);ones(1,length(y)) 0]; 
  
            dx=linspace(3000,3850,xlag); 
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            dy=linspace(10600,11000,ylag); 
            xest=[]; 
            yest=[]; 
            for i=1:length(dy) 
                for i1=1:length(dx) 
                    newxest(i1,1)=dx(i1); 
                    newyest(i1,1)=dy(i); 
                end 
                xest=[xest; newxest]; 
                yest=[yest; newyest]; 
            end 
%             [L,U]=lu(V); 
            we=[]; 
            for i=1:length(xest) 
                
                he=sqrt((x-xest(i)).^2+(y-yest(i)).^2); 
                f=[]; 
                f=find(he~=0);    
                he(f)= c0 + c1.*he(f); 
                 
                f=[]; 
                f=find(he==a); 
                he(f)=0; 
                 
                he=[he;1]; 
                we=[we he]; 
                 
%                 b=L\he; 
%                 W(:,i)=U\b; 
%                 info=round(i/length(xest)*100); 
%                 disp(num2str(info)) 
            end 
             
            W=V\we; 
         
        otherwise 
            disp('choose either spherical (sph) or exponetial (exp)') 
    end 
 
Kriging interpolation 
function [Zest,zest] = kriget(W,z,xlag,ylag) 
  
zest=W(1:end-1,:)'*z; 
  
for i=0:ylag-1 
    for i1=0:xlag-1 
        Zest(i+1,i1+1)=zest(i*xlag+1+i1); 
    end 
end 
 
IDW interpolation 
function [Zest1,zest]=idw(x,y,z,xest,yest,xlag,ylag,toldist) 
  
w=[]; 
for i=1:length(xest) 
    w=(sqrt((x-xest(i)).^2+(y-yest(i)).^2)); 
    f=find(w<=toldist); 
    w=1./(w.^2+eps); 
    zest(i)=(w(f)'*z(f))/sum(w(f)); 
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end 
  
for i=0:ylag-1 
    for i1=0:xlag-1 
        Zest1(i+1,i1+1)=zest(i*xlag+1+i1); 
  
    end 
end 
zest=zest';     
 
Validation code 
function [v]=valet(zest,z1,x1,y1,xest,yest) 
xes=[]; 
yes=[]; 
zes=[]; 
for i=1:length(x1) 
     
    k=abs(yest-y1(i)); 
    kmin=min(k); 
    f=find(k==kmin); 
     
    xe=xest(f); 
    ye=yest(f); 
    ze=zest(f); 
     
    k=[]; 
    k=abs(xe-x1(i)); 
    kmin=min(k); 
    f=find(k==kmin); 
     
    xes=[xes; xe(f(1))]; 
    yes=[yes; ye(f(1))]; 
    zes=[zes; ze(f(1))]; 
end 
  
  
v=(zes-z1).^2; 
v=mean(v); 
 
Code for computing semivariogram with anisotropy 
function [c01,c11,a1,type1,c02,c12,a2,type2] = semivar1(x,y,z) 
%x=pos(:,1);y=pos(:,2);z=val;  
% distx=zeros(length(x));disty=zeros(length(x)); 
dist=zeros(length(x)); 
close all 
  
  
%% Semivariogram North 
lags=linspace(60,410,8); 
zmean=[]; 
for p=2:length(lags) 
    qz11=[];qz12=[]; 
    for i=1:length(x) 
%         distx=x-x(i); 
%         disty=y-y(i); 
        dist=sqrt((x-x(i)).^2+(y-y(i)).^2);  
        ang = [((x-x(i))./dist) ((y-y(i))./dist)];  
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        newZ(:,1)=(z(:,1)-z(i,1)).^2; 
        newZ(:,2)=(z(:,2)-z(i,2)).^2; 
         
        f=[];newdist=[];newz=[];     
        f=find(ang(:,2)>= sin(60/360*2*pi) & dist <= max(lags)); 
        newdist=dist(f); 
        newz=newZ(f,:); 
        f=[]; 
        f=find(newdist >= lags(p-1) & newdist< lags(p)); 
%         newdist=newdist(f); 
        qz11=[qz11; newz(f,1)]; 
        qz12=[qz12; newz(f,2)]; 
         
    end 
    zmean(p-1,1)=mean(qz11)/2; 
    zmean(p-1,2)=mean(qz12)/2; 
     
    zmean(p-1,3)=(lags(p)+lags(p-1))/2; 
end 
[gamest1,he,c01,c11,a1,type1]=semivarmod(1.9,4.1,100,'sph'); 
[gamest2,he,c02,c12,a2,type2]=semivarmod(1.07,0.32,200,'exp'); 
figure 
subplot(321);plot(he,gamest1,'--r'); 
hold on 
plot(zmean(:,3),zmean(:,1),'-x'); 
hold off 
title('PCA 1 North') 
axis([0 max(zmean(:,3))+10 0 max(zmean(:,1))+1]) 
subplot(322);plot(he,gamest2,'--r'); 
hold on 
plot(zmean(:,3),zmean(:,2),'-x'); 
hold off 
title('PCA 2 North') 
axis([0 max(zmean(:,3))+10 0 max(zmean(:,2))+1]) 
%% Semivariogram for East 
lags=linspace(0,300,8); 
zmean=[]; 
for p=2:length(lags) 
    qz11=[];qz12=[]; 
    for i=1:length(x) 
%         distx=x-x(i); 
%         disty=y-y(i); 
        dist=sqrt((x-x(i)).^2+(y-y(i)).^2); 
        ang = [((x-x(i))./dist) ((y-y(i))./dist)];  
        newZ(:,1)=(z(:,1)-z(i,1)).^2; 
        newZ(:,2)=(z(:,2)-z(i,2)).^2; 
         
        f=[];newdist=[];newz=[];    lags=linspace(0,300,8); 
        f=find(ang(:,1) >= cos(30/360*2*pi)  & dist <= max(lags)); 
        newdist=dist(f); 
        newz=newZ(f,:); 
        f=[]; 
        f=find(newdist >= lags(p-1) & newdist< lags(p)); 
%         newdist=newdist(f); 
        qz11=[qz11; newz(f,1)]; 
        qz12=[qz12; newz(f,2)]; 
        
    end 
    zmean(p-1,1)=mean(qz11)/2; 
    zmean(p-1,2)=mean(qz12)/2; 
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    zmean(p-1,3)=(lags(p)+lags(p-1))/2; 
end 
  
subplot(323);plot(he,gamest1,'--r'); 
  
hold on 
plot(zmean(:,3),zmean(:,1),'-x'); 
hold off 
title('PCA 1 East') 
axis([0 max(zmean(:,3))+10 0 max(zmean(:,1))+1]) 
subplot(324);plot(he,gamest2,'--r'); 
  
hold on 
plot(zmean(:,3),zmean(:,2),'-x'); 
hold off 
title('PCA 2 East') 
axis([0 max(zmean(:,3))+10 0 max(zmean(:,2))+1]) 
%% Semivariogram for North-West and North-East 
lags=linspace(70,480,10); 
zmean=[]; 
for p=2:length(lags) 
    qz11=[];qz12=[];qz21=[];qz22=[]; 
    for i=1:length(x) 
%         distx=x-x(i); 
%         disty=y-y(i); 
        dist=sqrt((x-x(i)).^2+(y-y(i)).^2); 
        ang = [((x-x(i))./dist) ((y-y(i))./dist)];  
        newZ(:,1)=(z(:,1)-z(i,1)).^2; 
        newZ(:,2)=(z(:,2)-z(i,2)).^2; 
         
        f=[];newdist=[];newz=[];     
        f=find(ang(:,1) <= cos(15/360*2*pi) &... 
            ang(:,1) >= cos(75/360*2*pi) &... 
            sign(ang(:,2))==1 & dist <= max(lags)); 
        newdist=dist(f); 
        newz=newZ(f,:); 
        f=[]; 
        f=find(newdist >= lags(p-1) & newdist< lags(p)); 
%         newdist=newdist(f); 
        qz11=[qz11; newz(f,1)]; 
        qz12=[qz12; newz(f,2)]; 
         
        f=[];newdist=[];newz=[];     
        f=find(ang(:,1) <= cos(105/360*2*pi) &... 
            ang(:,1) >= cos(165/360*2*pi) &... 
            sign(ang(:,2))==1 & dist <= max(lags)); 
        newdist=dist(f); 
        newz=newZ(f,:); 
         f=[]; 
        f=find(newdist >= lags(p-1) & newdist< lags(p)); 
%         newdist=newdist(f); 
        qz21=[qz21; newz(f,1)]; 
        qz22=[qz22; newz(f,2)]; 
      
    end 
    zmean(p-1,1)=mean(qz11)/2; 
    zmean(p-1,2)=mean(qz12)/2; 
    zmean(p-1,3)=mean(qz21)/2; 
    zmean(p-1,4)=mean(qz22)/2; 
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    zmean(p-1,5)=(lags(p)+lags(p-1))/2; 
end 
  
subplot(325);plot(he,gamest1,'--r'); 
hold on 
plot(zmean(:,5),[zmean(:,1) zmean(:,3)],'-x'); 
hold off 
title('PCA 1 North-East & North-West') 
legend('model','N-E','N-W') 
axis([0 max(zmean(:,5))+10 0 max([zmean(:,1); zmean(:,3)])+1]) 
  
subplot(326);plot(he,gamest2,'--r'); 
hold on 
plot(zmean(:,5),[zmean(:,2) zmean(:,4)],'-x'); 
hold off 
title('PCA 2 North-East & North-West') 
legend('model','N-E','N-W') 
axis([0 max(zmean(:,5))+10 0 max([zmean(:,2); zmean(:,4)])+1]) 
frame=getframe; 
 
Code for semivariogram with isotropy 
% semivar_exp : Calcualte experimental variogram  
% 
%[hc,garr,h,gamma,hangc,head,tail]=semivar_exp(pos,val,nbin,nbinang) 
%   
% pos : [ndata,ndims] 
% val : [ndata,ndata_types] 
% 
% nbin : [integer] number of bins on distance anxes 
%        [array] if specified as an array, this is used. 
%   
% nbinang : [integer] number of arrays between 0/180 degrees 
%                     (default 1) 
% 
% Example : load jura data 
%   
dwd=[mgstat_dir,filesep,'examples',filesep,'data',filesep,'jura',files
ep]; 
%   [p,pHeader]=read_eas([dwd,'prediction.dat']); 
%   idata=6;dval=pHeader{idata}; 
%   pos=[p(:,1) p(:,2)]; 
%   val=p(:,idata); 
%   figure;scatter(pos(:,1),pos(:,2),10,val(:,1),'filled'); 
%     colorbar;title(dval);xlabel('X');ylabel('Y');axis image; 
% 
% Example isotrop:  
%   [hc,garr]=semivar_exp(pos,val); 
%   plot(hc,garr); 
%   xlabel('Distance (m)');ylabel('semivariance');title(dval) 
% 
% Exmple directional  
%   [hc,garr,h,gamma,hangc]=semivar_exp(pos,val,20,4); 
%   plot(hc,garr); 
%   legend(num2str(180*hangc'./pi)) 
%   xlabel('Distance (m)');ylabel('semivariance');title(dval) 
% 
%  
% 
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% TMH/2005-2009 
% 
% 
function 
[hc,garr,h,gamma,hangc,z_head,z_tail,dp,f]=semivar_exp(pos,val,nbin,nb
inang) 
   
   
ndata=size(pos,1); 
ndims=size(pos,2); 
  
if ndims==1; 
  % THIS SHOULD BE CHECKED FOR BUGS 
  pos=[pos 0.*pos]; 
  ndims=2; 
end 
  
ndata_types=size(val,2); 
  
% First calculate the 'distance' vector 
nh=sum(1:1:(ndata-1)); % Find number of pairs of data 
  
h=zeros(nh,1); 
dp=zeros(nh,ndims); 
z_head=zeros(nh,ndata_types); 
z_tail=zeros(nh,ndata_types); 
gamma=zeros(nh,ndata_types); 
vang=zeros(nh,1); 
  
i=0; 
for i1=1:(ndata-1) 
for i2=(i1+1):ndata 
  i=i+1; 
  if ((i/20000)==round(i/20000)) 
    disp(sprintf('semivar_exp : i=%d/%d',i,nh)) 
  end 
  
  p1=[pos(i1,:)]; 
  p2=[pos(i2,:)]; 
  dp(i,:)=p1-p2; 
  h(i)=sqrt( (p1-p2)*(p1-p2)' );  
  z_head(i,:)=val(i1,:); 
  z_tail(i,:)=val(i2,:); 
  gamma(i,:)=0.5*(val(i1,:)-val(i2,:)).^2; 
  % ANGLE 
  aa=sqrt(sum(p1.^2)); 
  bb=sqrt(sum(p2.^2)); 
  ab=(p1(:)'*p2(:)); 
  
  pp=p1-p2; 
  
  % WORKS ONLY FOR 2D 
  if pp(1)==0 
    vang(i)=pi/2; 
  else 
%    vang(i)=atan(pp(1)./pp(2)); 
    vang(i)=atan(pp(2)./pp(1)); 
  end 
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end 
end 
vang=vang+pi/2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%% 
% BIN INTO ARRAY BINS 
if exist('nbin')==0  
  nbin=10; 
else 
  if length(nbin)~=1 
    h_arr=nbin; 
    nbin=length(h_arr)-1;     
  end 
end 
  
if exist('h_arr')==0  
  h_arr=linspace(0,max(h).*.3,nbin+1); 
end 
hc=(h_arr(1:nbin)+h_arr(2:nbin+1))./2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% BIN INTO ANGLE BINS 
  
if exist('nbinang')==0  
  nbinang=1; 
else 
  if length(nbinang)~=1 
    ang_array=nbinang; 
    nbinang=length(nbinang)-1 
  end 
end 
if exist('ang_array')==0  
  ang_array=linspace(0,pi,nbinang+1); 
end 
hangc=(ang_array(1:nbinang)+ang_array(2:nbinang+1))./2; 
  
  
clear garr 
for i=1:nbin 
  for j=1:nbinang 
  f=find(h>=h_arr(i) & h<h_arr(i+1) & vang>=ang_array(j) & 
vang<ang_array(j+1)); 
  if (sum(gamma(f,:))==0) 
    garr(i,j,:)=NaN; 
  else     
    garr(i,j,:)=mean(gamma(f,:)); 
  
  end 
  end 
end 
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