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Abstract
Wireless sensors for detecting toxic disturbances in a sewage
system - a feasibility study
Johannes Nygren

Wireless sensor networks (WSNs) are promising for monitoring variables that are
hard to access, which could depend on lack of access to the commercial electricity
net, or delocalized properties of the variable, requiring several point measurements.
This is because WSN units are cheap and easy to install, since they do not require
wiring.

This work consists of a literature study of wireless sensor networks and some
simulations in SimuLink regarding a possible application of such networks. The
proposed application being simulated is toxic monitoring in a sewer pipe which
enters a wastewater treatment plant. If the toxic concentrations violate a certain
threshold, the incoming wastewater will enter a storage tank, which is emptied into
the activated sludge basin slowly, keeping toxic concentrations under the threshold.

The aim of this work is to provide some preliminary design and con�guration
recommendations for WSNs for this particular application. This work suggests a
con�guration of two WSN nodes, each with a chemical sensor, one at the inlet and
one a bit upstream. More nodes are shown to increase expected system longevity
by decreasing the energy consumption of individual nodes, since lower sample fre-
quencies are shown to give the same performance of the storage strategy, compared
to a case with only one node at the plant inlet. The excess energy consumption
from unsynchronized WSNs is also investigated. If the time o�set di�erence be-
tween the nodes is 1 minute, the individual energy consumption was still smaller
than the individual energy consumption of a one-node con�guration at the inlet,
according to simulations.

Key words: Wireless sensor networks, urban water systems, pipe �ow, toxic su-
pervision, activated sludge process.
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Referat
Trådlösa sensorer för detektion av giftstörningar i ett led-
ningsnät för avloppsvatten
Johannes Nygren

Trådlösa sensornätverk ("Wireless sensor networks", WSNs) är lovande i syfte
att mäta variabler som är svåråtkomliga, vilket kan bero på otillgänglighet till det
kommersiella energinätet, eller att variabeln har olokaliserade egenskaper vilket
kräver �era punktmätningar. Detta beror på att WSN-enheter är billiga och lätta
att installera, eftersom de inte kräver någon sladdbaserad koppling.

Detta arbete utgör en litteraturstudie om trådlösa sensornätverk samt en modellerings-
och simuleringsstudie i SimuLink rörande en möjlig tillämpning av sådana nätverk.
Den föreslagna tillämpningen som simuleras är giftövervakning i ett ledningsnät
som leder till ett avloppsreningsverk. Om giftkoncentrationen överskrider ett
särskilt gränsvärde, så kommer det inkommande avloppsvattnet att hamna i en
utjämningsbassäng. Vattnet i lagringsbassängen pumpas långsamt till den biolo-
giska reningen i avloppsreningsverket så att giftkonconcentrationen hela tiden hålls
under gränsvärdet.

Syftet med detta arbete är att tillhandahålla några preliminära design- och kon-
�gurationsrekommendationer för trådlösa sensornätverk i denna speci�ka tillämp-
ning. Detta arbete föreslår en kon�guration bestående av två WSN-noder, båda
med varsin giftsensor, där en är vid ingången till avloppsreningsverket och den
andra är en bit uppströms. En kon�guration med �era noder visar sig öka den
förväntade livslängden för systemet genom att minska energikonsumtionen hos in-
dividuella noder, eftersom lägre samplingsfrekvenser ger samma prestanda hos den
temporära förvaringsstrategin, jämfört med ett fall där nätverket bara utgörs av
en nod vid inloppet. Överskottet av energikonsumtion på grund av osynkroniser-
ade nätverk undersöks också. Om tidsförskjutningen mellan noderna är en minut
blir den individuella energikonsumtionen fortfarande mindre än den individuella
energikonsumtionen av en ennodskon�guration vid inloppet, enligt simuleringar.

Nyckelord: Trådlösa sensornätverk, urbana vattensystem, �öde i rör, giftöver-
vakning, aktivslamprocessen.
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Populärvetenskaplig sammanfattning

Johannes Nygren

Trådlösa sensornätverk är ett kommunikativt nätverk av sk. noder, som mäter
med sensorer, kommunicerar med varandra och skickar data med hjälp av en
sändare. Den vanligaste typen av sändare är radiosändare, men det �nns även
akustiska sändare som är lämpliga att använda för ett sensornätverk under vat-
ten. Sensorerna som används kan teoretiskt vara vilka tänkbara sensorer som
helst; temperaturgivare, tryckgivare, kemiska givare etc. Ett viktigt önskemål är
att sensorerna, liksom sändarna samt övriga komponenter som noderna utgör, ska
dra så lite energi som möjligt eftersom noderna går på batterier. Även nodernas
mjukvara bör vara energisnål, dvs. noderna bör programmeras på rimliga sätt så
de inte drar energi i onödan, till exempel genom att stänga av mottagaren när det
är troligt att inga meddelanden kommer.

Eftersom noderna är förhållandevis billiga och lätta att installera på grund av
att de inte kräver någon strömförsörjning från det kommersiella energinätet, �nns
det många möjliga användningsområden för de trådlösa sensornätverken. Några
exempel på tidigare tillämpningar är olika miljöövervakningsuppställningar i om-
råden där det inte �nns elförsörjning, exempelvis för uppskattningar av antalet
individer i vilddjurspopulationer, samt för prognoser om vulkanutbrott. Det fak-
tum att noderna är billiga och lätta att installera gör även att man kan använda
�era noder samtidigt och få bra helhetsinformation tack vare många punktmät-
ningar. Detta har varit användbart exempelvis för styrning av lufttemperatur och
luftfuktighet inomhus, genom att ventilera enbart när det behövs.

Ett tänkbart tillämpningsområde är giftövervakning i ett ledningsnät för att kunna
förvarna ett avloppsreningsverk om inkommande giftstötar. Vissa substanser har
visat sig hämma den biologiska reningen som �nns i de �esta avloppsreningsverk
genom att slå ut �oran av mikrorogansimer. Till exempel har nitri�erande mikro-
roganismer visat sig särsklit känsliga för gifter. Syftet med denna rapport är att
undersöka genomförbarheten av en sådan tillämpning, beroende på hur långsamma
sensorer man har tillgång till, var noderna är placerade samt vilken samplingstid
som används.

Resultaten är uteslutande baserade på datorsimuleringar i en modell som är byggd i
SimuLink. Vatten�ödet i kloakerna modelleras med Mannings ekvation, och trans-
porten av gift modelleras med en numerisk dispersionsalgoritm. Typen av gift är
godtyckligt. I modellen antas att det bara �nns ett gift, vars koncentration ges
som µg L−1. Om sensorerna registrerar giftkoncentrationer som överstiger ett visst
tröskelvärde på 30 µg L−1 skickar de data till avloppsreningsverket, som gör att
inkommande avloppsvatten pumpas till en utjämningstank. När giftpulsen har
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avlägsnat sig töms innehållet i förvaringstanken sakta in till aktivslambassängen
under kontrollerade former, så att inte koncentrationen överstiger gränsvärdet.
Tanken är att prestandan hos förvaringsstrategin endast ska bero på hur bra mät-
ningar på giftkoncentration man har tillgång till.

Energikonsumtion hos noderna modelleras också. Syftet med det är att få en
uppskattning om systemets hållbarhet, som bland annat är en funktion av en-
ergikonsumtionen hos individuella noder. Det visar sig att ett trådlöst nätverk
på två noder, där en är vid inloppet till reningsverket och där den andra är 5
km uppströms ledningen, kan avlasta energikonsumtionen hos individuella noder
avsevärt, jämfört med att bara ha en nod vid inloppet. Detta beror på att man
kan välja en betydligt lägre samplingstid och ändå få samma prestanda hos förvar-
ingsstrategin (dvs. strategi för att avleda avloppsvattnet till lagringsbassängen).
Noden uppströms kan varna noden vid inloppet att den registrerar höga gifthalter
med en larmsignal. Noden vid inloppet kan sedan öka samplingsfrekvensen (vilket
är ekvivalent med att minska samplingstiden) ett tag efter larmsignalen.

Om nätverket är osynkroniserat visar sig energikonsumtionen hos noden uppströms
öka betydligt, eftersom den måste skicka samma larmsignal �era gånger. Detta
beror på att noden vid inloppet hade sin mottagare avstängd vid fel tillfälle, på
grund av den dåliga tidssynkroniseringen. Tidssynkronisering verkar ha mer be-
tydelse för energikonsumptionen än för prestandan hos förvaringsstrategin.

I det enklaste scenariot mäts inte �öden i ledningsnätet. Därför måste man an-
vända tumregler för tidsförskjutningen från giftdetektion till dess att giftstöten
når inloppet. Blir �ödet oväntat stort, kommer alltså prestandan hos förvar-
ingsstrategin att bli väldigt dålig, eftersom systemet inte hinner reagera innan
giftkoncentrationen i aktivslambassängen skjutit i höjden. När �ödesmätare in-
förs blir prestandan bättre, men inte tillräckligt bra eftersom giftsensorerna har
en inneboende långsamhet, vilket gör att de inte hinner med att detektera giftet
innan koncentrationen i aktivslambassängen överstigit tröskelvärdet. Notera att
giftkoncentrationen i aktivslambassängen stiger fortare om in�ödet är stort. För
att åtgärda detta, testas ett scenario där noden uppströms sänder data direkt till
avloppsreningsverket istället för att larma noden nedströms. I det läget överstiger
inte giftkoncentrationen i aktivslambassängen tröskelvärdet, vilket sker på bekost-
nad av väldigt hög energiåtgång för noden uppströms. Det kan vara nödvändigt
att ha detta som en tillfällig åtgärd ifall det kommer en giftstöt under höga �öden
om sensorerna är relativt långsamma.
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1 Introduction
The interest for wireless sensor networks (WSNs) has increased rapidly in recent
years due to their potential applications. Some scientists believe that wireless
sensor networks will have a comparable impact on society as internet had. How-
ever, there seem to be few suggested applications for urban water systems in the
literature. This report mentions two previous applications of WSNs in urban wa-
ter systems. The �rst one is about locating leaks in water pipe networks with
acoustic sensors, see [2] and [10]. The other is about reducing the risk of combined
sewer out�ow (CSO) events, which means over�ow from sewer nets with combined
wastewater and backwater, by utilizing the storage capacity in the combined sewer
systems in a better way [9].

The purpose of this work is to propose a new way to apply WSNs to an urban
water system, and simulate the potential bene�ts/drawbacks of this application,
in terms of performance and energy consumption. Another purpose is to give some
preliminary recommendations on relevant WSN aspects, such as time synchroniza-
tion and sample frequencies.

The proposition of WSN application in this work is to monitor concentration lev-
els of an arbitrary toxin which is inhibitory to the activated sludge process in a
wastewater treatment plant. This is done using a small WSN equipped with chem-
ical sensors, located in a sewer pipe net. The incoming wastewater switches over
to a storage tank if the toxic concentrations become too high. The storage tank is
then slowly emptied into the activated sludge basin, getting steady toxin levels.

The layout of this report is as follows. In the second chapter, some background
information about WSNs is given. The chapter contains technical issues such as
communication, network localization, time synchronization and control issues spe-
ci�c for WSNs. This is followed by some examples of applications in urban water
systems in Chapter 3. Chapter 4 gives some background information on toxins
and their inhibitory e�ects on the activated sludge process. Chapter 5 describes
the model and two simulation scenarios, to describe how the model behaves in
practice. It also describes the three main scenarios being simulated, whose results
are presented in Chapter 6. The conclusions and recommendations for future work
is discussed in Chapter 7.

1



2 Wireless sensor networks
A wireless sensor network consists of a network of so-called nodes. The nodes are
in general battery driven individual units communicating with each other with
radio transmitters. They are, in turn, connected to suitable sensors (which can be
thermometers, pressure sensors, optical pulse sensors, etc). The nodes communi-
cate to a sink node, either by direct communication or hop-by-hop communication
depending on the location of the node. The sink node could, for example, be wired
to a laptop, where the data is stored.

Wireless sensor networks have many bene�cial applications, particularly since they
are cheap and easy to install. Wireless monitoring systems are necessary if the
monitored environment does not have installed infrastructure for energy. A typical
example is monitoring of animal behavior or other animal population variables in
their natural habitat.

Since the networks are wireless, the �nite energy budget is a primary design con-
straint. Therefore, distributed signal processing is commonly used within the
network matrix, to reduce the data amount transmitted between the nodes, since
communications are a key energy consumer [3]. Processing of data in a distributed
way can reduce communication cost, compared to the case where all raw data is
sent to the sink node which performs all processing.

Besides energy economization, the WSNs face other technical challenges. The
WSN must identify and adapt to resulting distributions of nodes, to simplify ad-
hoc deployment of nodes, or if some nodes or sensors change position over time.
Also, unattended operation requires self-con�guration of the nodes. To address
these problems, the following strategies are widely used [3]:

• Collaborative signal processing among nodes that have experienced a com-
mon stimulus.

• Exploiting redundancy of nodes in the system, by not letting more nodes
work than what is necessary for coverage demand.

• Signal processing manufactured to minimize energy consumption.

• A hierarchical, tiered architecture where higher capacity elements can o�oad
other elements when necessary.

Wireless sensor networks face many new technical challenges. In the following,
some of these issues are discussed. One technical aspect which is not mentioned
below is security. Security (from malicious agents) also faces new challenges for
WSNs, since the nodes communicate through the whole medium instead of isolated
wires, and since cryptation is a doubtful solution due to the excess communication
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load. This problem, however, is not discussed since it is not the main topic of this
work, see [17] for a further discussion.

2.1 Communication
Each sensor node in a WSN uses the protocol stack to communicate with one
another and the sink node. Communication in WSNs can be divided into several
layers with di�erent functions. A layer is a set of protocols with speci�c commu-
nication tasks.

One of those layers is the data-link layer, which deals with communication between
two nodes that share the same link. Medium Access Control (MAC) protocols,
which is an important part of the data-link layer, tries to ensure that two nodes
does not interfere with each other's transmissions, and deals with the situation
when they do. There exist di�erent MAC protocols with di�erent ways of dealing
with the problem. While traditional MAC protocols focus on maximizing package
throughput and minimize latency, MAC protocols for WSNs focus on minimizing
energy consumption.

The nodes commonly waste much energy by keeping their radios in receiver mode
and listen for transmissions, since they do not know when a message is going to be
sent to them. The T-MAC protocol, described in [15], uses an active/sleep duty
cycle to reduce energy wasted on idle listening. During active mode, the node's ra-
dio can either be in receiver mode, or transmit messages themselves. During sleep
mode, the node turns o� it's radio to save energy. Messages are queued during
sleep mode, and then bursted in active mode, rather than spreading them over a
large active time interval. The nodes go back to sleep mode if a small, preset time
period passes, without any message transfers taking place.

T-MAC performs just as good as a protocol with �xed duty cycles in simulations
with homogeneous load, which is up to 98% reductions in energy consumption
compared to the classic CSMA protocol (a protocol with no duty cycles). Dur-
ing variable load, T-MAC is �ve times better at conserving energy than the �xed
duty cycle protocol, according to simulations. Reference [17] also exempli�es the
B-MAC protocol, which performs even better than T-MAC in simulations.

Two other important layers are the transport layer and the network layer. The
transport layer ensures the reliability and quality of data at the source and the
sink. Transport layer protocols should have various applications such as packet-loss
recovery and congestion control. The network layer consist of routing protocols.
It should easily and e�ciently propagate data to the base station.
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2.2 Localization
Nodes which have been deployed in an ad-hoc manner do not have prior knowledge
of their own position. The problem of determining a node's position is referred
to as localization. Existing localization techniques include GPS and anchor nodes
(e.g. nodes with predetermined positions). The anchor nodes work as reference
points for the other nodes who determine their distance from the reference points
with message delays.

Another technique is proximity-based localization, which makes use of neighboring
anchor nodes to determine their position, and then act as anchor nodes themselves
for other neighboring nodes. The GPS and anchor node techniques have their
shortcomings, though. The GPS may not work when the nodes are deployed in
obstructed areas, and the anchor node technique scales bad in large networks.

One interesting localization algorithm is called Moores algorithm. This algorithm,
discussed in [7], formulates the localization problem as a two-dimensional graph
realization. It does not require anchor nodes, enabling localization without abso-
lute position information.

A graph is, as formulated in mathematical graph theory, a set G = (V,E), where
V is an n-dimensional set of vertices, and E is an e-dimensional set of edges. In
this case, the vertices represent sensor nodes and the edges represent distances
between the nodes. Graph theory provides ways of determining if a given graph
has a unique realization and therefore lacks ambiguities. The practical problem
is to manage enough distance information by node communication, to make an
unambiguous graph of the nodes relative positions in relation to each other.

The algorithm builds the graph by overlapping quadrilaterals. Quadrilaterals is
important because they are the smallest possible subgraph that can be unambigu-
ously localized in isolation.

Figure 1: Illustrated localization process with overlapping robust quadrilaterals.

One should distinguish between rigid and non-rigid graphs to understand how to
avoid ambiguities. A non-rigid graph can be continuously deformed and hence
realize a graph in an in�nite number of ways. A rigid graph is only subject to two
di�erent types of discontinuous ambiguities; �ip ambiguities and �ex ambiguities.
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Figure 2: Discontinuous �ip ambiguity.

Figure 3: Discontinuous �ex ambiguity.

A �ip ambiguity is when an individual node also can be realized by its mirror
image. A �ex ambiguity is when an edge can be removed, making the graph non-
rigid, and allowing the edge to be reinserted with the same length at a di�erent
con�guration. Thus, a graph which cannot become non-rigid by the removal of an
edge, formally called a redundantly rigid graph, is guaranteed not to have any �ex
ambiguities.

It is not entirely trivial, but the robust quadrilateral is in fact redundantly rigid,
thus excluding the possibilities of �ex ambiguities. Flip ambiguities only occur
in the algorithm when the distance measurements are noisy. However, [7] shows
that one can construct a robustness test where the worst case error probability
is bounded when the measurement noise is normally distributed with a known
variance.

2.3 Time synchronization
Time synchronization in a WSN is important for power conservation. When a
network is synchronized, there will be less collisions and re-transmissions, and
therefore, the nodes will be better at cooperating and the communication will go
more smoothly. A collision occurs when two nodes transmit at the same time,
interfering with each other's transmissions. When that happens, data packets are
corrupted, and hence, the energy used during transmission and reception will be
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wasted. Routing, which is the process of choosing the paths in which to send
network tra�c, also relies on time synchronization.

Two ways (among many) to achieve time synchronization is by using Lucarellis
algorithm, or Reachback �re�y algorithm (RFA), both mentioned in [17]. Lucarel-
lis algorithm is a form of bi-directional synchronization protocol between nearest
neighbors, which use timed pulses. If a node sends its pulse out of phase according
to a reference pulse from another node, it will increment its pulse phase according
to the algorithm.

To get a better grip of how Lucarellis algorithm works, it can be outlined in a
more formalized manner. Consider a state variable xi which increases from 0 to
1, for every node i in the network. When xi reaches 1, the node emits a pulse
and go back to 0. When the nearest neighbor node (say node j) register the pulse
signal, its corresponding state variable xj will make a sudden increase with a small
amount ε. If xj + ε > 1, the node will just reset xj to 0 and emit a pulse signal. If
a small ε is chosen, the time synchronization will be more precise, but slower. In
practice, a reasonable approach would be to let ε decrease successively over time
in some way.

RFA is an oscillator method inspired by a mathematical model which describes
how �re�ies and neurons spontaneously synchronize. In some major aspects, RFA
resembles Lucarellis algorithm. For a good description of the RFA protocol, see
[16]. It is guaranteed that the nodes will converge to synchronicity over time, for
both algorithms.

There are several options to resolve the problem of time synchronization used in
various synchronization protocols. Reference [11] categorizes several approaches,
which include:

• Master-slave or peer-to-peer synchronization. In the master-slave approach, one
node in the network is master and the rest are slaves. The slave nodes
synchronize their clocks with the master node. In practice, nodes with powerful
processors and lighter loads are assigned to be masters, since their CPU
requirements are higher, generally proportional to the number of slaves. In
peer-to-peer, the nodes communicate directly with each other to exchange time
information without master-slave relationships, until the whole network is
synchronized. The peer-to-peer approach o�ers more �exibility since it does not
risk synchronization prevention due to master node failure. However,
peer-to-peer synchronization is more di�cult to control.

• Clock correction or untethered clocks. Clock correction is when individual nodes
adjust their local clock, continually or instantaneously, to keep the network
synchronized. Untethered clocks achieve a global time scale without
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synchronization, by comparing timestamps between the nodes. The untethered
clock approach is becoming popular because of it's energy saving bene�ts.

• Internal or external synchronization. In internal synchronization, one tries to
minimize the maximum di�erences in local time readings between the nodes.
External synchronization uses an external time source as a reference, such as the
universal coordinated time. The nodes adjust their clocks to this reference time.

• Probabilistic or deterministic synchronization. These two methods use a
boundary value approach. The probabilistic approach gives an upper boundary
for the clock o�set with a bounded or determined failure probability, while the
deterministic approach guarantees an upper bound for the clock o�set with
certainty. The reason for using probabilistic methods in WSNs is that they need
less data transfer and thus less energy usage.

• Sender-to-receiver or receiver-to-receiver synchronization. In the
sender-to-receiver method, the sender sends its timestamp to the receiver, which
synchronizes its clock to the senders timestamp. To do this, the receiver must
consider the message delay time from sender to receiver, which is calculated as
the time when the receiver starts requesting a timestamp to when it actually gets
one. The problem is that there are variations in message delay time because of
network delays and workload in the nodes. This is often solved by calculating the
average message delay from many trials. However, in more modern systems, the
receiver-to-receiver method is more widely used. This method uses the same
broadcast message for many receivers at a time. The message delay is
approximately the same for all receivers in single-hop transmission, a fact which
is utilized in the method. The receivers then change timestamps with each other
and calculates the time o�set based on the di�erence in reception times. This
method highly reduces the message delay variance compared to the
sender-to-receiver method.

2.4 Compression and aggregation
Data compression is important for WSNs whose batteries are required to last long,
since communication is a large energy consumer. By compressing the data before
sending it, one can reduce the total energy consumption. The compressing algo-
rithm should not necessarily be optimal in the purpose of compression alone, since
the act of compression also consumes energy. The choosing of compression algo-
rithm should be in respect to the criteria of minimizing energy consumption, and
therefore, a suboptimal compression algorithm can be preferred. Data aggregation
is data from multiple sensors which is combined together and then transmitted.
In other words, data aggregation is a form of data compression.

Synopsis di�usion [17] is a framework for aggregation within the network. It
consists of three functions: synopsis generation, where a synopsis is created from a
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sensor reading, synopsis fusion, where a new synopsis is created from two others,
and synopsis evaluation, where a synopsis is translated to its �nal answer.

The synopsis di�usion process can be divided into two phases: distribution phase
and aggregation phase. During the distribution phase, a query node �oods the
network with queries (like "average", "sum", "min/max" etc.). Then comes the
aggregation phase, where the other nodes use the synopsis fusion function to merge
their local synopses with their received synopses. This continues until the query
node gets the �nal synopsis and performs synopsis evaluation on it.

2.5 Automatic control using WSNs
Since WSNs are energy limited, it is preferable to avoid continuous monitoring
and only monitor "when necessary", which leads to some drawbacks on control
performance. This section is based on [5].

A typical optimal control problem, based on wireless sensor networks, is:

Minimize J = f(Control performance, Energy consumption) (1)

Thus, the criterion gives some tradeo� between control performance and energy
consumption. It is desirable that the optimal control problem is formulated in a
strict mathematical way. Assume that the process to be controlled is described by
the following discrete-time state space model:

x̃(k + 1) = Ãx̃(k) + B̃u(k) (2)
y(k) = C̃x̃(k) (3)

where y(k) is the control variable, u(k) is the manipulation variable, and x̃(k) is
the state variable. Ã, B̃ and C̃ are matrices of suitable dimensions.

To get an analytically formulated optimization problem of type (1), [5] suggests
the use of model predictive control (MPC). The idea is to predict future control
variables from a prediction model based on future manipulation variables and old
control variables, formulate a criterion based on those variables and optimize with
respect to u(k +1), k = 0, 1, . . . , N . The optimized u(k +1) is then used for input,
and the procedure starts over. The model (2) and (3) is augmented as follows:

x(k + 1) = Ax(k) + B∆u(k) (4)
y(k) = Cx(k) (5)

where A =

[
Ã B̃
0 I

]
, B =

[
B̃
I

]
, C =

[
C̃ 0

]
, x(k) =

[
x̃(k)

u(k − 1)

]
and

∆u(k) = u(k) − u(k − 1). Then the general MPC predictor from step 1 to N is
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formulated as:



y(k + 1)
...

y(k + N)


 = G




∆u(k)
...

∆u(k + N − 1)


 + Fx(k) (6)

where G =




CB 0 ... 0
CAB CB 0 ...0

... ...
CAN−1B ... CAB CB


 and F =




CA
CA2

...
CAN


. Also note that

the state variable x is assumed to be perfectly observable.

Let the reference variable be denoted as yref . A quadratic function J , which
should be minimized, is de�ned as:

J =
N∑

i=1

(yref (k + i)− y(k + i))2 + λ

Nu∑
j=1

∆u(k + j − 1)2 (7)

The quadratic function (7) is minimized with QP (quadratic programming) subject
to the following linear constraint conditions:





ymin(k + i) ≤ y(k + i) ≤ ymax(k + i)

∆ymin(k + i) ≤ ∆y(k + i) ≤ ∆ymax(k + i)

umin(k + j − 1) ≤ u(k + j − 1) ≤ umax(k + j − 1)

∆umin(k + j − 1) ≤ ∆u(k + j − 1) ≤ ∆umax(k + j − 1)

i = 1, ..., N

j = 1, ..., Nu

(8)

The control optimization problem does not have any constraints on energy cost
so far. Minimizing (7) subject to (8) can be seen as maximization of control per-
formance, even though a suboptimal control law can be preferred over a wasteful
energy consuming optimal control law in a WSN.

To take energy cost (from communication) into consideration, it can be formu-
lated as follows. De�ne µC(i) as the i-th ahead communication switching variable
were µC(i) = 1 means communication execution and µC(i) = 0 means communi-
cation suspension. Also de�ne CC as some measure on communication cost. The
loss function (7) is now reformulated as:

J =
N∑

i=1

(
yref (k + i)− y(k + i)

)2

+ λ

Nu∑
j=1

µC(j)∆u(k + j − 1)2 (9)
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Now there are three conceivable ways to obtain an optimization problem of the
form (1), which are listed below:

1. Control performance optimization with communication energy constraint:
minimize (9) subject to (8) and CC

∑Nu
i=1 µC(i) ≤ C1.

2. Communication energy optimization with control performance constraint:
minimize CC

∑Nu
i=1 µC(i) subject to (8) and J =

∑N
i=1

(
yref (k + i) − y(k +

i)
)2

+ λ
∑Nu

j=1 µC(j)∆u(k + j − 1)2 ≤ C2.

3. Control performance and communication energy optimization: the combined
quadratic function JC =

∑N
i=1 (yref (k + i)− y(k + i))2+λ

∑Nu
j=1 µC(j)∆u(k+

j − 1)2 + CC

∑Nu
i=1 µC(i) is minimized subject to (8).

For every evaluation, an optimal manipulation sequence µC(1), ∆u(k), µC(2),
∆u(k + 1), ..., µC(Nu), ∆u(k + Nu− 1) is gained. The �rst term ∆u(k + i − 1)
such that µC(i) = 1 is applied after i time steps, and held until the next evaluation
is applied.

Reference [5] also brie�y discusses the case when the state variable x is not mea-
surable, and must be estimated.

2.6 Sensors in WSNs
It is desirable that sensor technology is provided for continuous sensing of wide
varieties of variables, to provide extensive applications of WSNs. So-called passive
sensors, which operate without electricity, are very promising for WSN utilization.

Wave technology sensors is a passive sensor type with a wide range of applications,
including pressure and torque, temperature, vapor and moisture measurements [2].
The principle of acoustic wave sensors is conversion between mechanical waves and
oscillating electrical �elds, with the help of piezoelectric materials, such as quartz.
When the material in which the wave is propagating is imposed by mechanical
stress, the velocity and/or amplitude of the wave changes, and the change in wave
characteristics can be used to quantify the stress.

If a coating which absorbs speci�c biological chemicals in liquids is applied, the
pressure on the sensor increases with higher concentrations of biochemicals, and
thus, the sensor becomes a biosensor. Of all the known acoustic sensors for con-
centrations in liquids, the so-called Love wave sensor has the highest sensitivity
according to [2].
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3 Applications in Urban Water Systems
This section lists examples of earlier successful applications of WSNs in urban
water systems. Besides from urban water systems, WSNs have had many other
successful applications including minimization of energy consumption in Heat Ven-
tilating and Air Conditioning (HVAC) systems [12].

3.1 Leak location in water pipe networks
A common problem for manufacturing municipal water pipe networks is detecting
leaks, a result of (natural) pipe deterioration. To detect leaks, acoustic equipment
is commonly used such as noise loggers, simple listening devices such as ground
microphones, and leak noise correlators. Of the three methods mentioned, leak
noise correlators is the most e�ective and reliable method. The leak noise is
measured at two di�erent points, and the signals are sent to the correlator, which
determines the position of the leak based on the following expression:

pleak = p1 +
p2 − p1

2
+ tlag · vsoundPipe (10)

where tlag is the time shift of the maximum correlation between the measurement
points, p1 and p2 are the locations of the measurement points in respect to some
reference point, and vsoundPipe is the propagation velocity of leak noise.

Since wired leak noise correlation systems are costly and di�cult to install, the
use of a WSN is highly motivated. The LeakFinderRT system, presented in [3], is
such a WSN correlation system with an enhanced correlation algorithm and low
frequency vibration sensors. The PipeNet project, presented in [10], is another
wireless leak detection system under development. WSNs are not only applicable
to leak detection in pipes; they are also promising for �ow monitoring, since they
can monitor the �ow in many locations through a pipe network at a relatively low
cost. There are many reasons to conduct �ow monitoring, including determination
of total system �ow, identi�cation of �ow capacities through the pipe network, and
calibration of �ow models [13].

3.2 Reduction of Combined Sewer Out�ow (CSO) events
A combined sewer out�ow (CSO) event could occur in wet weather, which may
result in discharges of untreated water into rivers and other watercourses. The
CSO events often occur in combined sewer systems, i.e. the older sewer systems
without separation of wastewater and backwater. Only in the United States, 850
billion gallons of discharged untreated water each year from CSO events cause
risks of eutrophication, drinking water contamination and human illness.
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The combined sewer out�ow network (CSONet) in [9] is a WSN for storage control,
used to maximize the utilization of the existing storage capacity in the combined
sewer systems. In the summer of 2005, a pilot CSONet was deployed in South
Bend, IN. Three smart valves were controlled using water level data from sensors
within the basin and at the CSO outfall, 3.2 miles away. With this data, the basins
upstream could open its smart valve in time, releasing water to the lower basins
and hence prepare for the CSO event.
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4 Toxic e�ects on the activated sludge process
This work proposes WSN-based monitoring of substances in wastewater which
are toxic to the microbes in the activated sludge process at a wastewater treat-
ment plant. Many pollutants have shown inhibitive e�ects on the activated sludge
process because they are toxic to the microbes. This includes pharmaceuticals,
cyanide and heavy metals, among other pollutants.

In [8], the toxicity of cadmium, copper and zinc on the activated sludge pro-
cess is investigated with arti�cial wastewater. Concentrations of zinc greater than
3 mg L−1 were shown to inhibit the development of microorganisms. Copper in-
hibited the microorganisms even greater with concentrations of 2 mg L−1. Earlier
studies have shown that copper concentrations greater than 63.5 µg L−1 entirely
inhibit the development of �lamentous bacteria. Some microbiologists believe that
�lamentous bacteria, due to their thread-like formations, is good for the activated
sludge process in moderate amounts, since they provide a skeleton for the �ocs and
make them more stable against mechanical stress. However, it is well documented
that large amounts of �lamentous bacteria cause sludge swelling [14], which is a
state where the sludge sediments slowly. Cadmium, also with a concentration of
2 mg L−1, inhibited the microorganisms even more. Thus, the following toxicity
sequence were concluded: Cd > Cu > Zn.

In [6], toxic e�ects of nickel and copper on nitrifying bacteria are investigated
speci�cally. There was no visible inhibition of nitri�ers until the copper concen-
tration reached 5 mg L−1, or until the nickel concentration reached approximately
100 mg L−1.

A common way to quantify acute toxicity is to estimate the median lethal dose,
LD50. The LD50 variable is de�ned as the toxic dose required to kill 50% of a
speci�c population. It is usually expressed as mass of toxic substance per mass of
test subject.

Accurate threshold values for di�erent toxins are hard to estimate, since side ef-
fects from other compounds in wastewater are di�cult to predict. A reasonable
approach is to test di�erent threshold values for di�erent toxins in individual water
treatment plants and see how it works.

13



5 Methods
In this study, the performance of the proposed storage strategy is investigated
with respect to WSN node placements, sensor slowness, sampling times and node
energy consumption.

The investigations are executed in a model built in SimuLink. The model can
be divided in three sub-models; a sewer pipe net model, a wastewater treatment
plant model, and a WSN model. Figure 4 shows a model overview without the
WSN.

Figure 4: A model overview with model variables. The external model inputs are
the �ows and toxic concentrations to pipe 1 and 2, referred to as Q1, c1, Q2 and
c2.

The wastewater treatment plant model includes, apart from the activated sludge
basin, a storage tank and a small sewer net. The wastewater is bypassed to the
storage tank if the WSN registers high toxic concentrations (meaning toxic levels
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that violate a certain threshold). The bu�er tank empties into the activated sludge
basin in small portions to keep toxic levels low.

In the model, only one toxin is present (the choice of toxin is arbitrary). Forma-
tions of toxin complexes and other chemical processes in the pipes are neglected;
what comes in also comes out. The activated sludge basin is represented by a
mass balance equation with a toxic concentration variable, and the challenge is to
keep this concentration low. In reality, the proposed system should of course con-
sider several di�erent toxins which could inhibit the activated sludge process, but
the conversion of a single toxin-model to a multiple toxin-model is straightforward.

The model builds on the following assumptions:

1. The e�uent �ow rate from the activated sludge basin is always equal to the
total in�uent �ow rate and does not have a maximum limit.

2. The propagation of �ow velocity through the pipe is simulated as momentum
conversion in each segment. This will be explained further on.

3. The propagation of toxin through the pipe is described by a numeric disper-
sion algorithm, which depends on the time resolution of the model. This will
also be explained further on.

4. The hydraulic dynamics of the pipes within the wastewater treatment plant
is neglected. The �ow from the inlet to a tank and the �ow from the storage
tank to the activated sludge tank is hence not delayed due to long pipes.

5. The switch valve and the storage to activated sludge tank valve is simulated
as lowpass �lters.

5.1 The sewer pipe net model
The purpose of the pipe net model is to provide possibilities of WSN node place-
ments and to get reasonable toxic plume appearances at the wastewater treatment
plant inlet. Another purpose is to get a relationship between �ow and �ow velocity
on the form v = f(Q).

The sewer pipe net consists of three pipes put together, as shown in Figure 4. This
makes two pipe inlets, a merging point and an outlet to the wastewater treatment
plant. The pipes are represented by arrays where each element represent a pipe
segment of 100 m. Each segment has a �uid velocity, a �uid cross-section area and
a toxic concentration, all of which are varying with time. Note that the �ow is the
product of velocity and cross-section area.

A set of parameters is needed to be set for the model, such as pipe length, pipe
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radius and slope. According to [18], a typical �ow velocity is 0.5 m s−1, typical
time delays from source to water treatment plant is a couple of hours, and the
pipe diameters usually range from 225 mm in the beginning of the net, to 1000
mm at the end of the net. Thus, the pipe radii for pipe 1 and 2 were set to 0.35
m, and the radius for pipe 3 was set to 0.50 m. Note that the radii were chosen
comparatively large at the beginning, in comparison to the usual pipe diameters.
This is due to the simplicity of the pipe net. In reality, many small pipes merge
together into larger pipes, but here, there is only one merging point. If two very
small pipes merge into a big pipe, there are not much room for varying �ow in
the big pipe, since the �ow boundaries according to the Manning equation become
narrower in the smaller pipes. The pipe lengths were set according to Figure 4, to
maintain a time delay of approximately 6 hours.

The �ow and velocity relation in the sewers is simulated with Manning's equation
(11), which is suitable since the water does not �ll the whole pipe area. Manning's
equation is given as:

v =
1

n
·R

2
3
h · S

1
2 (11)

where v is the mean �ow velocity [m s−1], Rh is the hydraulic radius [m], S is
the slope of the water surface or the linear hydraulic head loss [m/m], and n is
a dimension free roughness parameter. Reference [1] lists typical values for n for
di�erent materials, where 0.016 corresponds to rough asphalt or untreated gunite,
and troweled concrete has 0.012, for example. The sewer pipe walls were expected
to be made of concrete with a roughness equivalent to rough asphalt due to im-
pacts, roots or other disturbances. Hence n = 0.016 was chosen for all pipes.

The slope parameter S was set to 0.001 m/m for pipes 1 and 2, which is shown to
give approximately quarter full pipes at �ow velocities of 0.5 m s−1. To be more
speci�c, the �ow Q = 3.1818 m3 min−1 generated the velocity v = 0.4978 m s−1

and �ow cross-section area A = 0.1065 m2 according to the Manning equation,
applied as described below. When the �ows of pipe 1 and 2 merge into pipe 3,
each with �ow velocities 0.5 m s−1, the �ow in pipe 3 will be approximately 6.4 m3

min−1. S for pipe 3 is thus chosen so a �ow of 6.4 m3 min−1 approximately gives
a �ow velocity of 0.5 m s−1. Thus, S was set to 6 · 10−4 for pipe 3. This means
that if Q = 6.7576 m3 min−1, then v = 0.4971 m s−1 and A = 0.2265 m2.

Rh can be further described as Rh = A
P
, where A is the �uid cross-section area [m2]

and P is the wetted perimeter [m], a parameter commonly used in environmental
engineering, see Figure 5.
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Figure 5: The wetted perimeter.

The wetted perimeter is illustrated in two examples in Figure 5; a pipe to the left
and an open canal to the right. Both �gures are shown in a view perpendicular
to the �ow. The wetted perimeter for each case is the length in meters of the fat
line, which is the surface line submerged in the �uid.

Since v = Q
A
, where Q is the �ow [m3 s−1], (11) can be reformulated as:

Qn

S
1
2

= R
2
3
h · A =

A
5
3

P
2
3

(12)

which will be seen as a more useful formulation if a relation of the form v = f(Q)
is wanted. A way to derive A from the above expression (when Q is known) is
wanted, with which v easily is derived from v = Q

A
. The next step is to de�ne

the angle θ as illustrated in Figure 6. θ is de�ned as the angle from the altitudi-
nal line to the merging point between the water surface and the pipe wall, at the
center of the pipe. When θ = 0, the pipe is empty, and when θ = π, the pipe is full.

Figure 6: A cross-sectional view of a pipe.
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A can unambiguously be expressed with θ as follows:

A = r2(θ − sin θ cos θ) (13)

which means that the right hand side of (12) expressed as a function of θ would
be useful. Since P = 2θr,

R
2
3
h · A =

A
5
3

P
2
3

= r
8
3 · (θ − sin θ cos θ)

5
3

(2θ)
2
3

⇔ Qn

S
1
2 r

8
3

=
(θ − sin θ cos θ)

5
3

(2θ)
2
3

= f(θ) (14)

However, it would be more practical to have an explicit expression of θ, since θ is
the unknown variable to be derived from Q with the help of (12). But (14) cannot
be analytically solved with respect to θ, which means that a numerical solution
is necessary. The graph from this numerical solution is shown in Figure 7. This
graph contains 100 data points and was generated numerically. The model uses it
as a table where θ ranges from 0.1 to π, interpolating between the points.
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Figure 7: θ vs f(θ).
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The relationship in Figure 7 is ambiguous for some f(θ). This is because there
is a certain θlim (shown in Figure 7) where 0 < θlim < π, with the unambiguous
property f(θlim) = max f(θ). However, θlim responds to a certain Qlim according
to (12): Qlim = r

8
3 S

1
2

n
· f(θlim). If Q > Qlim, the upper part of the graph is used,

otherwise, the lower part is used. The model does not extrapolate if f(θ) is outside
the boundary; it simply takes the end values instead.

When θ is determined and A is calculated from (13), v is calculated from v = Q
A
.

This is done in the pipe inlets, where Q is an in-parameter to the model. It is also
done to calculate initial velocities for all pipe segments, given initial �ow values.
The propagation of Q and v throughout the pipes is described by a discretized
version of the continuum equation, and the preservation of momentum principle,
respectively. The continuum equation is as follows:

∫

CS
ρ(−→v · n) dA = − d

dt

∫

CV
ρ dV (15)

where ρ is the water density [kg m−3] and −→v is the relative velocity vector. CS
and CV under the integral signs stand for control surface and control volume re-
spectively. Here, n is a unity vector perpendicular to an in�nitesimal area dA
pointing out from the control volume.

In the model, the control volume is a cylindrical pipe segment of 100 m according
to the pipe discretization, whose area is the control area. However, only the areas
normal to the pipe �ow need to be considered, since there are no �ow through the
pipe walls (i.e. −→v ·n = 0 since the vectors are perpendicular). Thus, (15) becomes
(after elimination of ρ):

vp−1Ap−1 − vpAp =
dVp

dt
(16)

where vp−1 and vp are net velocities in and out of the control volume of pipe seg-
ment p, and Ap and Ap−1 are cross-section �uid areas at the control volume in-
and outlets. This equation is easily understood intuitively; the positive change of
water volume over time equals the net in�ow minus the net out�ow.

Equation (16) is now discretized with Euler forward as follows, to get a time-
update equation for A:

V t+1
p − V t

p

ts
= vt

p−1A
t
p−1 − vt

pA
t
p ⇔

V t+1
p = V t

p + ts(v
t
p−1A

t
p−1 − vt

pA
t
p) ⇔

At+1
p = At

p +
ts
lp

(vt
p−1A

t
p−1 − vt

pA
t
p)

(17)

where ts is the �xed time step, which is set to one minute in the model, and lp
is the pipe segment length, which is set to 100 m as mentioned above. The last
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relation comes from substituting V t+1
p =

At+1
p

lp
.

The time update equation for v is, as previously mentioned, derived from the
momentum conservation principle. The following relation is presumed:

ρV1,tv
p−1
t + ρV2,tv

p
t = ρV t+1

p vt+1
p (18)

where the volumes V1 and V2 are explained in Figure 8.

Figure 8: An illustration of the momentum conservation principle, as used in the
simulation algorithm.

In Figure 8, there is a time update �rst, where the �uid blocks move according to
the current velocities in the pipe segments. The next step is total mixing, where
the total �uid volume in the segment is merged together. This is where the ve-
locity update occurs according to the momentum conservation principle, since the
volumes V1 and V2 have di�erent velocities. Both the time-update and the mixing
step are described by (18). Note that this is a velocity propagation algorithm
which is untested empirically. Also note that it depends on the time step used in
the model, in other words, the way in which the model is discretized.

When the volumes is merged this way, there is a risk that the merged volume
will overlap the total volume possible for the pipe segment, because of overlapping
volumes after the time step. This will only happen for big and positive Q gradi-
ents, and must be considered when determining the model range for Q.
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Substituting V1,t = At
p(lp − vt

pts), V2,t = At
p−1v

t
p−1ts and V t+1

p =
At+1

p

lp
and elimi-

nating ρ gives:

vt+1
p =

At
p(lp − vt

pts)v
t
p + At

p−1ts(v
t
p−1)

2

At+1
p

lp (19)

And then, �nally, Qt+1
p = vt+1

p At+1
p .

Another possible selection of a time update equation for v is to use the Man-
ning equation in another way. One could use (17) and calculate θ from A =
r2(θ − cos θ sin θ), and then use the Manning equation (11) to get v. However,
this means that θ will be calculated from another table, which may result in slight
inconsistencies between the two ways the equation is applied. This problem can
be avoided by only applying the equation in one of the two ways consequently,
and since v is updated from A according to the continuum equation, the �rst way
cannot be used. Because of this, A has to be an input parameter to the model
instead of Q as described in Figure 4, and Q will have to be calculated explicitly
from Q = vA. Secondly, the Manning equation is designed for steady state �ow,
which means that it is unreliable to use it as a time update equation. Because of
this, the momentum conservation principle is used instead, even though it is an
idealization since it does not consider friction loss against the pipe walls.

The other input parameter into the pipe inlets, except for Q, is the toxic con-
centration c [µg L−1]. The propagation of c through the pipe is described as a
mass balance equation as follows:

d(cpVp)

dt
=

dCp

dt
Vp +

dVp

dt
cp = Qp−1cp−1 −Qpcp (20)

which is discretized by Euler forward:

ct+1
p − ct

p

ts
V t

p +
V t+1

p − V t
p

ts
ct
p = Qt

p−1c
t
p−1 −Qt

pc
t
p (21)

and after some algebraic manipulations, a time update equation for c is given:

ct+1
p =

ts
At

plp
(At

p−1v
t
p−1c

t
p−1 − At

pv
t
pc

t
p) +

2ct
pA

t
p − ct

pA
t+1
p

At
p

(22)

This equation depends on the time resolution in an analogous way as the time-
update equation for the �ow velocity (19). Hence, numerical dispersion, meaning
dispersion as an e�ect of discretization, is used in this model. To achieve disper-
sion in line with empirical observations, the advective-dispersive equation should
be used instead.
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At the merging point where the outlets of pipe 1 and 2 are the inlet of pipe
3, the following mass balance approaches are used:

Qin,3 = Qout,1 + Qout,2 (23)

cin,3 =
Qout,1cout,1 + Qout,2cout,2

Qout,1 + Qout,2

(24)

5.1.1 Model ranges
The eventual, physical upper range for c would be far over reasonable concentra-
tions. The physical lower range is of course 0. The model ranges of Q come from
the fact that the model is not designed to handle full-pipe �ows. This also implies
ranges for A and v because of the mutual correlations.

The �ow inputs to the model, which are the �ows at the inlets of pipe 1 and
2, are denoted as Q1 and Q2. Consequently, the incoming toxic concentrations are
denoted as c1 and c2.

For constant �ow, the upper limit for Q1 and Q2 is 15.6 m3 min−1, which is
Qfull for pipes 1 and 2 shown in Figure 9. Due to the risk of overlapping e�ects,
as described in Figure 8, it is not possible to make a table of model ranges for Q1

and Q2 for varying �ow. Here, Q1 and Q2 must be chosen so that the volumes
in the pipe segments (for all pipes) does not exceed π ·r2 · lp during the simulations.
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Figure 9: The v, A and Q relationships in pipe 1 and 2.

Figure 9 suggests an upper limit for Q in pipes 1 and 2, since a full pipe should
be avoided. Here, Afull = π · 0.352 ≈ 0.38 m2, which corresponds to vfull = 0.68
m s−1 = 40.8 m min−1 and Qfull = 15.6 m3 min−1. A natural thing would be to
chose Qfull as an upper limit for Q throughout the pipe. However, there might
be unwanted overlapping e�ects in the algorithm described by Figure 8, due to
high Q gradients in the pipe. As the pipe area �lls, there will be a point when
the velocity actually decreases due to friction against the pipe walls. This point is
called vmax in the graph. vmax = 0.70 m s−1 = 42.0 m min−1, which corresponds
to Qmax = 14.4 m3 min−1 and Amax = 0.33 m2.
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Figure 10: The v, A and Q relationships in pipe 3.

Accordingly, Figure 10 suggests an upper limit for Q in pipe 3. Afull = π ·
0.502 ≈ 0.77 m2, which corresponds to vfull = 0.67 m s−1 = 40.2 m min−1 and
Qfull = 31.2 m3 min−1. Moreover, vmax = 0.69 m s−1 = 41.4 m min−1, which
corresponds to Qmax = 28.2 m3 min−1 and Amax = 0.69 m2.

5.2 The wastewater treatment plant model
An overview of the wastewater treatment plant model is shown in Figure 4. This
part of the model is simulated in variable step time, which means that the in-
coming variables from the pipe, Qin and cin, are transformed into variable step
functions where the current value is held during the pipe model step time ts.

The activated sludge basin is only simulated as a container with a toxic concen-
tration, ca. In other words, any microbial activity is not considered in the model.
The goal is to keep ca under a certain threshold, denoted cthreshold, as much as
possible. The dynamics in the basin are described by:

dVaca

dt
= Qin,totcin,tot −Qout,totca ⇔ dca

dt
=

Qaincin + Qtact − (Qain + Qta)ca

Va

(25)

where Va is the water volume in the activated sludge basin. The hydraulic reten-
tion time, tret in the basin is chosen as 2 hours when Qin = 6 m3 min−1 (vin ≈ 0.5
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m s−1). Since tret = Va

Qin
, Vt = 2 · 60 · 6 = 720 m3 in the model. Explanations of

the other variables in the equation are found in Figure 4. This is in fact a mass
balance model with total mixing, where the in�ow equals the out�ow; hence, Va

is constant. Total mixing implies that the concentration in the out�ow equals the
concentration in the basin, ca.

In the storage tank, variable water volume is considered. The water volume Vt

equals Ath, where h is the water level and At is the storage tank area, set to 600
m2. The volume of the storage tank is not supposed to limit the performance of
the storage strategy in the model. The concentration dynamics in the storage tank
are described by the following mass balance equation:

dVtct

dt
= Qtincbin −Qtact (26)

where the additional variables are explained in Figure 4. Total mixing is assumed
also. The product rule gives:

dVtct

dt
=

dVt

dt
ct +

dct

dt
Vt =

At
dh

dt
ct +

dct

dt
Ath = Qtincbin −Qtact ⇔

dct

dt
=

Qtincbin −Qtact

Ath
− ct

h
· dh

dt

(27)

The dynamics of the storage wastewater level h is described by:
dVt

dt
= At

dh

dt
= Qtin −Qta ⇔ dh

dt
=

Qtin −Qta

At

(28)

So, the storage tank dynamics consist of the two di�erential equations (27) and
(28). The variable h should avoid exceeding the tank height hmax (which is set
to 3 m in the model) but this should be avoided by the control laws. However,
both variables h and ct get a saturation point at zero, so they are constrained to
be positive. When h → 0, (27) goes to in�nity since h comes in as a denominator.
This makes the model very sensible when h is small. To correct for this, the h in
(27) is chosen to 0.001 when h ≤ 0.001.

The dynamics in these tanks are controlled by regulating the switch and/or the
storage to activated sludge valve shown in Figure 4. The switch and the valve are
both modeled as lowpass �lters with time constants 30 and 5 seconds respectively.
There is an actuator in the plant which gathers data and sends reference values
to the switch and the valve according to some control laws. The reference value
for the switch is called ∆Q which tells how the incoming wastewater should be
distributed between the tanks. ∆Q is de�ned by:

∆Q =
Qin −Qain

Qin

=
Qtin

Qin

(29)
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The reference value for the valve is simply called Qta,ref [m3 min−1], where 0 ≤ Qta,ref ≤ Qmax.
However, since the time constants for the lowpass �lters are relatively small com-
pared to the time resolution, there are only small di�erences between the reference
values and the real values.

The control law for ∆Q is given by:




∆Q = 0 if cin,WSN ≤ cthreshold or h ≥ hmax

∆Q =
ca

cthreshold − 1
if cin,WSN > cthreshold and ca < cthreshold

∆Q = 1 if ca > cthreshold and h < hmax and cin,WSN > cthreshold

(30)

where cin,WSN is the incoming toxic concentration measured by the WSN-node at
the plant inlet. Additionally, ∆Q = 1 also if h < hmax and upstream nodes have
registered high c-values some suiting time ago (rules of thumb is used here). The
expression ∆Q = ca

cthreshold − 1 makes ca converge to cthreshold − 1. The reason for
the −1 is to be on the safe side; the storage strategy is not supposed to limit
performance in the simulations.

The control law for Qta is given by:




Qta,ref = 0 if ca > 0.5 · cthreshold + 0.1

Qta,ref = Qain
0.5 · cthreshold − cin

ct − 0.5 · cthreshold

if 0.5 · cthreshold ≤ ca ≤ 0.5 · cthreshold + 0.1

Qta,ref = Qmax if ca < 0.5 · cthreshold

(31)

if ca = cthreshold and the calculated Qta,ref lands outside the interval [0 Qmax], the
model simply takes the correspondent end value of the interval. The expression
Qta,ref = Qain

0.5 · cthreshold − cin
ct − 0.5 · cthreshold

is used to keep (25) in steady state at the point
ca = 0.5 · cthreshold. In these conditions, (25) becomes:

0 = Qaincin + Qta,refct − 0.5(Qain + Qta,ref )cthreshold ⇔
Qta,ref (ct − cthreshold) = Qain(0.5 · cthreshold − cin) (32)

which gives the control law in (31). The steady state point ca = 0.5 · cthreshold is
chosen way below the threshold so there will be no storage emptying before the
threshold violation is over.
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Figure 11: A block diagram of the switch control.

Figure 11 illustrates the switch control law. The control law performed by the
actuator is described in (30). The two calculation blocks in the switch can be
understood from the relations in (29). The parameter swpole equals 2, which cor-
responds to the time constant 60

swpole
= 30 s.

Figure 12: A block diagram of the valve control.

Figure 12 illustrates the valve control law. The control law performed by the ac-
tuator is described in (31). The lowpass �lter is preceded by a saturation block,
keeping Qta within it's physical limits. If h drops to 0, Qb drops to 0 directly
in spite of the lowpass �lter. This is done by a merge block in Simulink. The
parameter vpole equals 12, which corresponds to the time constant 60

vpole
= 5 s.

5.3 The WSN Model
A WSN unit is simulated as a node with a chemical sensor, a processing unit and
a radio transmitter/reciever. Sometimes, a �ow sensor is also added to the unit.
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The nodes can be in active or passive sensing mode, which have a preset active
sample period and passive sample period respectively. Active sample period is
sometimes referred to as "Asp" in the text, and passive sample period is some-
times referred to as "Psp".
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Figure 13: A simulation test of a WSN node sensing a unit-less rise/fall signal.

Figure 13 illustrates the principle of how a single node works. It is applied on a
unit-less signal that has nothing to do with the toxic measurements in the pipe
model. The node is in active mode if the sensed signal is above the threshold,
otherwise it is in passive mode. Here, the active sample period is 5 min and the
passive sample period is 10 min. The sensed signal is held during the current
sample time.

The qualitative drawbacks for the sensors are simulated by �ltering the incoming
measurements through a lowpass �lter and direct time delays, which represents
the slowness of the sensors. It is perhaps a rather ad-hoc way of realizing the
drawbacks. The lowpass �lter has a rise time of 35.5 minutes for all simulations
and the time delay varies from case to case.
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The upstream nodes communicate with the downstream nodes by sending alarm
signals when registering toxic concentrations higher than the threshold, telling the
downstream nodes to go into active mode after some time delay according to some
rule of thumb, guaranteeing the downstream nodes to detect the plume also. The
alarm signal is in fact a timestamp of the time the toxic plume was detected (when
the threshold was violated).

The downstream node will be in active mode until the toxic plume is detected,
stay in active mode, and go back to passive mode when the plume passes. It also
switches to active mode if it registers threshold violations without getting any
alarm signals (which means that the upstream node missed the toxic plume). In
real life, one has to apply some strategy if a plume is not detected at all by the
downstream nodes (due to dilution and such) for switching back to passive mode,
but such a strategy is not considered in this model.

If the downstream node gets the alarm signal, it sends back a noti�cation packet
to the upstream node saying that the alarm was received. If the upstream node
sent the alarm signal without getting a noti�cation packet, which means that the
receiver node had its radio turned o� at the moment, it will send another alarm
the next minute, keeping the receiver on.

In a hop-by-hop case, where upstream nodes use downstream nodes as part of
their transmission path when sending data to the actuator, the upstream nodes
will send data repeatedly each minute until they get a noti�cation packet. This is
much worse to energy consumption since data packets are much bigger than alarm
signals. The downstream nodes only turn their receivers on at the same time as
they activate the sensor, which means that the "listening time period" is the same
as the sample time period.

To estimate the comparative lifetime between di�erent sensor con�gurations, an
energy consumption model is applied to the WSN model. The lesser the energy
consumption, the longer the life expectancy of the WSN. Since only the relative
energy consumption between di�erent cases is important, the background energy
consumption is set to 0 (which is the energy consumption when the node is doing
nothing). The sensors are set to consume 1 mJ when sensing for each variable.

The energy consumption model for the radio transmitter is based on the model
used in [4], and it looks like this:

Etransmit = k · (Eelec − eamp · d2) (33)
Ereceive = Eelec (34)

where Etransmit and Ereceive is the energy used for transmitting and receiving/idle
listening respectively. Here, k is the number of bits transmitted, which equals 32
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for each data variable or alarm signal transmitted since they are assumed to be
32-bit �oat numbers, and 1 for noti�cation packets since they are assumed to be
boolean.

For each set of data transmitted, a timestamp of 32 bit is also sent. This has
no practical meaning in the simulations other than the additional energy cost. For
example, if only c is transmitted, the data will be sent in a 64-bit packet. If both
Q and c is transmitted, the data will be sent in 96-bit packets.

Eelec is the energy consumption in the circuit per data bit, set to 50 nJ bit−1

in the model, and eamp is the energy consumption of transmitting per bit and
distance squared, which is set to 0.1 nJ bit−1 m2. Finally, d is the transmission
distance. Eelec and 0.1 nJ bit−1 m2 was chosen the same as they where in [4].
Since received messages only come as boolean, Ereceive is assumed to be the same
regardless of receiving or idle listening events, as shown in (34).

5.4 Scenarios and simulation
To make some suggestions for WSN performance in the current application, some
scenarios are simulated where a toxic burst enters the wastewater treatment plant.
The simulation time for these scenarios is 900 minutes.

How well the storage strategy performs depends entirely on the quality of the
toxic monitoring, since the storage tank is dimensionalized to contain the whole
volume of the toxic plume. Initially, the sample time of the WSN nodes is the
same as the time resolution for the pipe model, namely one minute. The initial
sample time is not supposed to be a limiting factor until it is increased to check
changes in performance.

There are no localization problems in the scenarios since the nodes are not spread
in an ad-hoc manner. There might be time synchronization problems however, for
cases with more than one node.

The following holds for all simulation scenarios, if not speci�ed otherwise. Q1

and Q2 are constantly 3 m3 min−1, and the �ows throughout pipe 1 & 2 are also 3
m3 min−1 initially. The initial values for the pipe 3 segments are 6 m3 min−1, since
that is the outcome at the merging point. Note that Qin = 6 m3 min−1 throughout
the simulations at default. The threshold value cthreshold is set to 30 µg L−1. Since
there is no measurement noise simulated, one could chose a cthreshold close to the
background concentration to make the system react fast. However, this would be
unrealistic since there is measurement and process noise in reality.

The background toxic concentration is 0.5 µ g L−1, which also is the initial con-
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centration in the activated sludge basin and the storage tank for all simulations.
The toxic burst comes in after 20 minutes of simulation, as a square impulse in
pipe 1, with an amplitude of 10 µg L−1 and a duration time of 30 minutes. When
the plume reaches the wastewater plant inlet, it will be outspread over a longer
time, as shown in Figure 14.

Figure 14: The toxic square pulse in pipe 1 (c1) and its appearance at the plant
inlet (cin).

The pulse is diluted at the merging point, which is shown in Figure 14. This is
because of a mixing e�ect with nontoxic wastewater coming from pipe 2 (cmerge

is the toxic concentration in the �rst segment of pipe 3, while cpipe1,end is the end
segment of pipe 1 just before the merging point, as the name suggests). The time it
takes for the pulse to reach the plant inlet is approximately 350 minutes according
to Figure 14.

5.4.1 Performance tests with di�erent sampling times
To estimate the WSN performance on a speci�c case, the performance needs to
be technically de�ned in some way. Generally speaking, performance in this case
is a measure of how much the threshold is violated during the simulation, both
the quantity of violation and time duration of violation. A reasonable alternative
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would be to choose the area of the ca-curve that is higher than cthreshold in the ca

vs. time graph. That is, the following integral:

Av =

∫ 900

t=0

max(ca(t)− cthreshold, 0) dt (35)

where Av is denoted as area of threshold violation.

However, it would be even better to chose a parameter that easily can be used
for comparison. Therefore, the (negative) measure of performance is furthermore
called threshold violation, denoted Tviol, and de�ned as:

Tviol =

∫ 900

t=0

max(ca(t)− cthreshold, 0) dt

∫ 900

t=0

max(ct,no temporary storage(t)− cthreshold, 0) dt

· 100% (36)

The integral in the denominator is the worst case possible for a given plume; the
toxic violation area without any storage strategy at all. For this particular case,
Tviol = 100%. When there is no threshold violation, which means that the perfor-
mance is as good as it can get, Tviol = 0%. To estimate Tviol, the ca curve must
sink back to or below cthreshold during the simulation time to get the whole area.

For a given passive sample period, the toxic plume can either be detected early if
lucky or late if unlucky. To get a good picture of the performance from di�erent
sampling times, simultaneous simulations with di�erent o�set times are executed
and the Tviol from each simulation is gathered. For example, if one wants to test
the performance with a passive sample period of 3 minutes, 3 simulations with
o�set times 0, 1 and 2 minutes are executed. This means that the sensors sample
with a three minute interval, where the �rst sample occurs either initially or after
one or two minutes. Since the pipe model has a time resolution of 1 minute, sample
times can only be chosen as one minute multiples.

Assume that passive sample period n is chosen. This gives n threshold viola-
tion values called Tviol(0), Tviol(1), · · · , Tviol(n−1) where Tviol(i) corresponds to a
time o�set of i minutes. From this data set, the following parameters are of interest:
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Tmean
viol =

1

n

n−1∑
i=0

Tviol(i) (37)

T var
viol =

1

n

n−1∑
i=0

(Tviol(i)− Tmean
viol )2 (38)

Tmax
viol = max

0≤i≤n−1
Tviol(i) (39)

Tmin
viol = min

0≤i≤n−1
Tviol(i) (40)

where "var" in (38) stands for sampled variance.

Tmin
viol = 0 for every performance test executed in this report, since they are exe-

cuted only in cases where the threshold is not violated when sample time is one
minute. When there is only one node, active and passive sample periods are chosen
equal since there is no point in doing it another way. The only crucial thing is the
detection of the plume, which depends on the passive sample period alone.

There is also need for another de�nition, namely the sample period range. In
the following text, the term sample period range means the interval of sample
times for which

Tmean
viol = 0 (41)

T var
viol = 0 (42)

Tmax
viol = 0 (43)

Tmin
viol = 0 (44)

The upper limit of this interval, for which (41)-(44) holds, is in the following text
referred to as the sampling period limit, or ts, lim. Correspondingly, the following
parameters are also calculated during simulation:

Emean
tot =

1

n

n−1∑
i=0

Etot(i) (45)

Evar
tot =

1

n

n−1∑
i=0

(Etot(i)− Emean
tot )2 (46)

Emax
tot = max

0≤i≤n−1
Etot(i) (47)

Emin
tot = min

0≤i≤n−1
Etot(i) (48)

where Etot stands for the sum of the node energy consumption during 900 minutes
of simulation. This is, of course, only the energy consumption from sensing, idle
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listening, receiving and transmitting. Etot = 0 only means that the node neither
sense, listen, receive or transmit during the whole simulation period, it does not
say anything about energy consumption from other activities (such as driving the
internal clock, being in sleep mode, running synchronization algorithms, processing
data and such). This parameter is only of interest for comparison.

5.4.2 Realization of time synchronization
In the simulations, there will also be energy consumption tests for badly synchro-
nized WSNs, consisting of two nodes which is the upstream node and the plant
inlet node. Strictly speaking, the nodes are considered synchronized when they
have the same o�set times (and, of course, the same passive sample periods). For
example, if both nodes have Psp = 10 minutes and a time o�set of 4 minutes, they
will sample at simulation times 4, 14, 24 and so on.

The unsynchronized WSNs are realized in two di�erent ways. In the �rst ap-
proach, the probability that one speci�c node is ahead of the other is assumed to
be equal. If Etot,in(i, j) and Etot,up(i, j) is de�ned as the total energy consumption
during 900 minutes for the plant inlet and the upstream node correspondingly,
with inlet node time o�set = i minutes and upstream node time o�set = j min-
utes, and if the time o�set of the upstream node is at max x minutes higher or
lower than the time o�set of the plant inlet node, the following is applied:

Etot,in(i) =
1

2x + 1

i+x∑
j=i−x

Etot,in(i, j) (49)

Etot,up(i) =
1

2x + 1

i+x∑
j=i−x

Etot,up(i, j) (50)

(45)-(48) is then used to get the parameters of interest for both nodes.

In the second approach, the upstream node is assumed to be the master node
and thus ahead of the plant inlet node (the slave node). If the upstream node is
x minutes behind, Etot,in(i, i− x) and Etot,up(i, i− x) are gathered and applied in
(45)-(48). This is perhaps more realistic if some time synchronization algorithm is
used.

5.4.3 Flow measurements with upstream node compensation
In the third scenario, which is described further on, �ow sensors are added to the
two nodes, to handle an environment of unreliable �ow velocities. These �ow mea-
surements are used to estimate delay times used to say how long the inlet node
or the plant actuator should wait before reacting to an alarm signal (timestamp)
from the upstream node. Figure 20 in Example scenario 2 describes how these
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time delays are estimated.

The inlet node will be too slow to handle the incoming �ow pulse. To solve
this problem, the upstream node will send its data to the plant actuator, which
switches to the storage tank after some time delay, independent of inlet node mea-
surements. When the upstream node does this, it will not send any alarm signals
to the inlet node.

5.4.4 Example scenario 1: Constant �ow with one sensor
In this simulation, the chemical sensor at the plant inlet (which is the only sensor
in the scenario) has a time delay of 20 minutes. Recall that the measurements are
both delayed and �ltered by a lowpass �lter with rise time = 35.5 minutes. The
delay and lowpass �lter represents the quality drawbacks of the sensor. A time de-
lay of 20 minutes is necessary to get threshold violations for WSN measurements.
Otherwise, the WSN will react before ca has reached the threshold.

First, a simulation without any storage strategy was conducted. Figure 15 shows
the results. Have in mind that the rate of toxic concentration in the tank is a
function of the hydraulic retention time, which is chosen as 2 hours.
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Figure 15: System response without storage strategy.

The upper graph in Figure 15 shows the toxic concentration in the tank when
there is no storage strategy at all. Tviol mentioned above the graph is the thresh-
old violation parameter de�ned in (36). The lower graph shows the true cin and
the measured cin,WSN .

Next, the plant was assumed to have access to ideal measurements at the plant
inlet. This means that the measured toxic concentrations equal the true toxic
concentrations. The results are shown in Figure 16.
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Figure 16: System response with ideal measurements.

The upper graph in Figure 16 shows the lower part of the cin burst shown in Figure
15. The system reacts at the time when ct is rising rapidly, which is the same time
when the storage water level h in the lower graph starts to rise. Here, ca does not
violate the threshold, which is to be expected since ideal measurement is assumed
(meaning that the true cin equals the measured cin).
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Next, the system had access to WSN measurements at the inlet, instead of ideal
measurements. The results are shown in Figure 17.
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Figure 17: System response with WSN measurements at the inlet.

There is a temporary violation of the threshold due to the slow reaction, as shown
in Figure 17. This is corrected later due to dilution from the nontoxic wastewater,
however, this dilution takes place a little late.

With sensors like these, it is not a good idea to place them at the inlet. A better
idea may be to place them a bit upstream in the pipe, so they have time to react.
Since the sensor has a time delay of 20 minutes and the water velocity is approx-
imately 30 m min−1, a reasonable suggestion is to put the node 20 · 30 = 600 m
upstream. This gives the following results, shown in Figure 18:
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Figure 18: System response with WSN measurements 600 m upstream.

In Figure 18, the threshold is not violated. The system reacts a little slower than
it does for the ideal case, but it still has good margins.

The sample period range, de�ned by (41)-(44), for the case in Figure 18 is the
interval 1−17. This means that the sampling period limit is = 17 minutes for this
case. If sample time = 18 minutes, Tmean

viol = 9.9466 · 10−4 %, T std
viol = 0.0042 % and

Tmax
viol = 0.0179 %.
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Figure 19: Energy consumption graph with a sample time of 17 minutes.

The upper graph in Figure 19 shows the appearance of the sensor signal, and the
lower graph shows the energy consumption of the node, when the sample time is
17 minutes and the time o�set is 0 minutes. There are exactly 17 minutes between
the energy consumption peaks in the lower graph, which �rst come from sensor
measurements only. The higher peaks come from both sensing and transmission
of data, which occur when high toxic concentrations are registered.

Figure 19 is just for illustration; the parameter considered consequently through-
out the simulations is the sum of the total energy consumption for 900 minutes,
from here on referred to as Etot.

5.4.5 Example scenario 2: Constant �ow with two sensors
There exist two main reasons to add more than one node to the pipe network:

• To increase redundancy. If one node malfunctions, the others can take its
functional place. This feature is not considered in this work.

• To reduce node energy consumption (on an individual basis), for example
by having higher sample time periods (lower sample frequencies) than rea-
sonable for a one-node con�guration. Energy consumption reduction implies
increase of system lifetime.
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When two sensors are employed, a wide variety of WSN strategies can be applied.
The storage strategy can take data from upstream nodes into consideration (after
some time delay), which requires the upstream nodes to send data. In reality, the
data could be sent to the actuator which performs model calculations to predict
the concentration at the plant inlet.

If the �ow velocity is not constant, there might be a need to measure that variable
also, which adds to the system energy consumption. If data is sent by the upstream
node, it can either be sent directly to the plant actuator, or to the inlet node in a
hop-by-hop strategy. This decreases the energy consumption of the upstream node
since the transmission distance decreases, at the cost of higher inlet node energy
consumption.

In this model, hop-by-hop routing is not considered since the inlet node is just
100 m from the actuator, which means that additional gains in energy saving are
assumed to be small. If the storage strategy only considers inlet node data, the
function of the upstream node is only to send alarm signals to the inlet node,
making it register the toxic pulse sooner.

The nodes have a time delay of 15 minutes in this scenario. The further up-
stream the upstream node is placed, the more energy consumption due to long
distance transmission will be needed, and the more undeformed the plume will be.
In this example, the upstream node is placed 10 000 m from the plant actuator,
which is 9900 m from the plant inlet node.
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Figure 20: Toxic plume appearances at node locations.

Figure 20 shows the same plume at two di�erent times and locations; one at the
�rst section of pipe 3 just below the merging point where the upstream node is,
and the other at the last section of pipe 3 where the plant inlet node is. Both nodes
have a sample period of 1 minute. When the upstream node detects the plume
(which is when the measured curve �rst violates the threshold), it takes exactly
299 minutes for the plume to be detected by the plant inlet node downstream.
This would suggest the rule of thumb that the inlet node switches to active mode
299 minutes after the upstream node detects the plume.

However, if the passive sample period (Psp) is more than 1 minute, let say 5
minutes, then there is a time of detection interval from 295 to 299 minutes, de-
pending on the sampling time o�set. This means that the node should go into
active mode 295 minutes after the timestamp value, to be on the safe side.

The time delay from an alarm signal (time stamp) to when the node switches
to active mode is furthermore referred to as response time delay, or tr.
To illustrate the consequences of unsynchronized systems, with long sample peri-
ods, a simulation was conducted. The results are shown in Figure 21. The choosing
of Psp, Asp, time o�sets and response time delays for this simulation are discussed
below.
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Figure 21: Energy consumption plot.

The upper plot in Figure 21 shows measured vs. real c when Psp = 100 and
Asp = 1. The upstream node detects the plume 150 minutes into the simulation.
That measurement is held until the next measurement 100 minutes later. The
other plots show the energy consumption of both nodes.
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"A" in the lower graph in Figure 21 shows the energy consumption of measure-
ments taking place. The inlet node also turns on its radio during this minute, so
its peak is actually slightly higher. The sample time of the upstream node is o�set
by 50 minutes.

"B" shows the energy consumption peak of the upstream node detecting the plume,
turning its radio on (to listen for noti�cation packets) and sending an alarm signal
(as a timestamp, which is the detection time = 150 minutes) to the inlet node.
Since there is a time o�set of 50 minutes, the upstream node tries to send the
timestamp 50 times until it is received by the inlet node. The solid peak at the
foot of the much larger dotted peak shows the energy consumption of the inlet
node measuring, turning its radio on and sending a noti�cation packet.

After some time delay, the inlet node switch to active mode, which is shown in
"C". This also explains why the inlet measurement is so smooth in the upper
graph. The response time delay (tr) is chosen as 300 minutes minus Psp and the
di�erence between timestamp and receival time (see Figure 20). Since Psp = 100
minutes, the timestamp = 150 minutes and receival time = 200 minutes, the node
will wait 300− 100− (200− 150) = 150 minutes before switching to active mode,
from the time when the alarm signal was received.

The additional energy to send the data to the actuator, which starts after 380
minutes when cin,WSN violates the threshold, is not seen in Figure 21 since it is
so small. This is because the actuator is only 100 m away from the node. In this
simulation, Etot(upstream node) = 16.0 J and Etot(inlet node) = 270 mJ.

The estimated delay time from when the upstream node registers the plume, to
when the inlet node registers the plume, is furthermore denoted test,D, where 'D'
stands for detection. Additionally, the estimated delay time from when the up-
stream node detects the plume to when the node reaches the plant inlet (which is
sooner than the inlet node actually detects it) is denoted test,in.

The time delay estimation test,in is used by the actuator in Scenario 3 (which
is described further on), when it gets measurements from the upstream node. It is
used in an analogous way as how the inlet node handles alarm signals, except that
it is a time delay from when the upstream node detects the plume, to when the
incoming water switches over to the storage tank independently of the inlet node
measurements.
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Both test,D and test,in are determined as the time delays from upstream node toxic
detection to downstream node toxic detection or ideal measurement detection
at the inlet, respectively (when Psp = Asp = 1 minute). These are the time
delays found in Figure 21 for this case. The response time delay is chosen as
tr = test,D − Psp minutes throughout the simulations.
In reality, test,D and test,in is a function of �ow velocity, node distances, sensor
slowness and sample period. In scenario 3, the �ow measurements are assumed to
be used for simulation by the actuator to estimate test,in. In reality, larger sample
periods are likely to make these estimations worse, but here, the available mea-
surements are assumed to be enough.

5.4.6 Implementation of main scenarios

It could be convenient to have one sensor at the wastewater treatment plant inlet,
since toxic conditions can change during the �ow path in reality due to chemical
reactions or toxic injections close to the plant. Therefore, the �rst scenario is a
scenario with a single node at the plant inlet. This node senses and transmits toxic
concentrations only, together with timestamps. The toxic concentration variable
together with the timestamp are assumed to consist of two 32-bit �oats.

Toxic violations and total energy consumptions of the node during the simulation
time are gathered for di�erent sample times and di�erent sensor delay times. This
is done for both default Qin and doubled Qin (which is Qin = 12 m3 min−1). The
active sample periods and passive sample periods are set equal. This is because
the node will go to active mode only when the toxic plume already is detected.
However, for a case when Tviol exceed 0 %, one can theoretically improve perfor-
mance by decreasing the active sample period. This is because the sensor could
miss the point there cin decreases below cthreshold. Some cases of this sort are also
investigated by decreasing the active sample period. These simulations are exe-
cuted for sensor time delays of 5, 10 and 15 minutes respectively.

Scenario 2 is a case with two nodes, one at the inlet and the other at varying
locations upstream. The simulations are executed with a sensor time delay of 15
minutes. Both sensors have the same time delays and, since time synchronization
is assumed, the same time o�sets. The supposed increase of system longevity due
to energy consumption reductions in individual nodes is investigated. Here, the
upstream node sends no data to the plant actuator, its only function is to send
alarm signals to the downstream node when it detects toxic levels that violate the
threshold.

The active sample period is always chosen as the corresponding ts, lim of the inlet
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node. Supposed increases in energy consumption, when the WSN is unsynchro-
nized, are also investigated according to section 5.4.2. Here, the upstream node
only measures c.

Scenario 3 is the same as scenario 2, except that the toxic plume comes together
with a �ow pulse temporarily doubling the �ow and making the thumb rules for
the estimation of plume arrival at the plant inlet more unreliable. This is due
to the fact that the nodes lack �ow sensors and thus assume default �ow veloc-
ity throughout the pipes in this scenario. This is compared with a case when
both nodes also have �ow sensors, and thus increasing the sensor and transmis-
sion energy consumption since there is one more variable to handle (there is one
timestamp for each pair of variables).
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6 Results and discussion
First, a performance test was conducted. Psp increased from 1 and up, and mean
values of Tviol and Etot were gathered (see section 5.4.1 for details). For each simu-
lation, Asp = Psp. This was done with sensor time delays of 5, 10 and 15 minutes
each. The results are shown in Figure 22.

6.1 Scenario 1: One node at the plant inlet
Figure 22 shows a tradeo� relationship between performance and energy consump-
tion (or system lifetime). The threshold violation limits (ts, lim) are the sample
times of the points coinciding with the x-axis, however, no sample times are shown
in this graph but in Figure 23. Each point di�ers from the neighbors with a sample
time of 1 minute.

Figure 22: Mean Tviol vs. energy consumption.

The same performance test was conducted with double in�ow (Qin = 12 m min−1).
The resulting changes in threshold violations are shown in Figure 23.
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Figure 23: Comparison between the resulting threshold violations when
Qin = 6 m min−1 and Qin = 12 m min−1.

The threshold violation limits (ts, lim) are the sample times of the points coincid-
ing with the x-axis in Figure 23. If ts, lim(i) is the threshold violation limit for
default in�ow of a sensor with delay time i minutes, then ts, lim(5) = 13 min,
ts, lim(10) = 8 min and ts, lim(15) = 3 min. Correspondingly, Etot,lim(5) = 70.3 mJ,
Etot,lim(10) = 114.3 mJ and Etot,lim(15) = 304.7 mJ.

Moreover, the threshold violation level for a sensor delay time of �ve minutes
with doubled in�ow is �ve minutes, with a corresponding Etot of 182.5 mJ. There
are no ts, lim values for delay times 10 and 15 minutes, which is seen in the graph.

If the active sample period would decrease, the end of the plume could be de-
tected sooner, which means that the system would dilute the intoxicated sludge
basin with incoming nontoxic wastewater sooner. This was tested, by performing
an additional performance test with a sensor time delay of 15 minutes, Qin = 12
m min−1 and by choosing Asp = 1 minute. The results from these tests are shown
in Figure 24.
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Figure 24: Performance test with Asp = 1 minute.

The graphs in Figure 24 show the relative bene�ts/drawbacks for varying the ac-
tive sample period. The performance improves slightly by choosing a low active
sample period (high active sampling frequency). The energy consumption more
than doubles for high sample periods.

Note that Asp does not a�ect ts, lim since there are no threshold violations to
be diluted by nontoxic incoming wastewater when the sample time = ts, lim.
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6.2 Scenario 2: Two nodes in pipe 3
In this scenario, two nodes are conducted; one at the plant inlet and one 5000 m
upstream (in the middle of pipe 3). First, the model was executed with passive
and active sample time = 1 minute for both nodes, and the resulting c curves are
shown in 25.

Figure 25: Real c and measured c curves for both nodes.

The time delay test,D is the time di�erence from when the upstream node �rst
detects the plume to when the inlet node �rst detects it in Figure 25. For this
particular case; test,D = 153 minutes.
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Performance tests were conducted where both nodes always have the same passive
sample period, and where the active sample time of the inlet node is 3 minutes.
Recall that ts,lim(15) = 3 minutes 23, meaning that Tviol is guaranteed to be 0 if
the alarm signal reaches the inlet node before the toxic plume does. The results
are given in Figure 26.
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Figure 26: Etot curves for plant inlet node and upstream node respectively.

Recall that Etot,lim(15) = 304.7, way above both nodes in Figure 26. Here, the
nodes are synchronized (meaning that the time o�sets are the same). The node
with the highest energy consumption can be seen as the limiting node for the
system lifetime, so it is desirable that the nodes energy consumption should be
approximately equal.

First, the energy consumption decreases for both nodes with increasing Psp. The
upstream node draws more energy than the inlet node because it sends a 32-bit
alarm signal (timestamp) 5000 m, which draws a lot of energy. When Psp ≥ 80,
the energy consumption for the inlet node starts to rise. This is because it goes
into active mode much earlier in the simulation to compensate for the uncertainty
from big sample times.
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From Figure 26, one can conclude that it is suitable to chose Psp = 60 for this
type of sensor, when toxic pulses are expected to come approximately every 900
minutes. If the pulses are expected to come less frequent, it is bene�cial to choose
Psp > 60, because the low sampling frequency will compensate for longer periods
in active mode some more. However, if Psp is chosen too big, the plume can
do a considerate amount of damage to the activated sludge microbes before it is
detected. There is risk of missing the plume if Psp is greater than the time delay
of thumb, which is 154 minutes for this case.

To see how the system responds to bad time synchronization, two synchroniza-
tion tests were conducted according to section 5.4.2. In the �rst synchronization
test, the upstream node is as likely to be ahead of the inlet node as to be behind
it, in terms of time o�sets. The time o�sets di�er only 1 minute at max for this
synchronization test. The results are shown in Figure 27. In the other test, the
upstream node acts as a master node. The results from that synchronization test
are shown in Figure 28.

Figure 27: System response with unsynchronized nodes.
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The upper graph in Figure 27 shows that this kind of unsynchronization is catas-
trophic for the upstream node from an energy conservation point of view. The
catastrophic results occur because there is a 1/3 risk that the inlet node will be 1
minute ahead of the upstream node, which is equivalent to the case that the inlet
node is Psp − 1 minutes behind the upstream node. In this case, the upstream
node tries to send the energy expensive alarm signal for Psp− 1 minutes.

For high Psp, there will even be threshold violations, as shown in the lower graph,
since the alarm signal do not reach in time. However, a more realistic scenario is
to have the upstream node act as a master node, eliminating the risk of the inlet
node being ahead of the upstream node.

Figure 28: Here are the results of bad synchronization with the upstream node
acting as a master node. The two upper curves illustrate the rise in energy con-
sumption from having a 1 minute di�erence in time o�sets.
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The energy consumption of the inlet node in Figure 28 is independent of synchro-
nization for time o�sets and sample times of these magnitudes. The curve of the
upstream node energy consumption is translocated with a magnitude correspond-
ing to the energy cost of the additional alarm signal transfer.

Recall that the energy consumption of the upstream node has to go above 304.7
mJ for the two-node con�guration to be pointless, according to Figure 23.

Consider also that these synchronization tests were conducted in a model with
a time resolution of 1 minute, which means that messages are transmitted once
per minute at max. In reality, the nodes might try to transmit more than once per
minute. The real challenge is to have the synchronization gap between the nodes
to be less than the transmission time, to avoid wasted transmissions.

6.3 Scenario 3: Two nodes in pipe 3 with variable �ow
After 20 minutes of simulation in this scenario, Q1 and Q2 doubles, and stays at
double default (6 m3 min−1) throughout the whole simulation time (900 minutes).

Figure 29: Flow pulse and toxic pulse at the plant inlet.
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In Figure 29, the appearance of the toxic pulse and the �ow vs time are seen.
Note that the toxic concentration is given as mg L−1 instead of µg L−1 to get an
appropriate scaling when comparing to the �ow.

During the propagation of the �ow step, the �ow builds up at the front, then
stabilizing at 12 m3 min−1. This is due to collision of fast and slow water masses
(since higher �ow indicates higher velocity according to the Manning equation
(11)). The propagation of the �ow step is described by (19).

Figure 30: Real c and measured c curves for both nodes.

Figure 30 shows the appearance of the plume at the node sites (which is the same
as in Scenario 2) for the case with an in�ow step according to Figure 29. Here,
both nodes have passive and active sample period = 1 minute. The upstream node
is still located in the middle of pipe 3.

For this particular case; test,D = 144 minutes, and test,in = 122 minutes. How-
ever, since there are no �ow measurements, the plant in�ow is expected to be at
default (6 m3 min−1). Therefore, the test,D used in simulation is the same as in
Figure 25, which is 154 minutes (which gives tr = 154− Psp).
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Figure 31: Comparison between cases with 1 and 2 variable measurements. This
means that either c is measured only, or both c and Q is measured.

The upper graph in Figure 31 shows the energy consumption of each node in both
cases. The more variables measured, the higher the energy consumption. The end
node takes the heaviest burden since it is the only node switching to active mode
(with Asp = 1 minute for this scenario).

Recall that there is no ts, lim-value for a node with time delay = 15 minutes when
Qin is double default according to Figure 23. This explains why Tviol will not
become zero, even with a more accurate response time estimation provided by the
�ow measurements (when �ow is measured, test,D = 145 minutes, see Figure 30).

In a case like this, it would be feasible if the upstream node could send its mea-
surements to the actuator directly, so that it could implement the data from the
upstream node into its storage strategy. The results of such a node compensation
simulation are shown in Figure 32.
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Figure 32: This is the energy consumption graph from the node compensation
strategy for sample times 10− 120 minutes.

Since both Q and c are measured, test,in = 123 minutes according to Figure 30.
De�ne the switch response time delay, or tr,sw as the time delay from when the
plume �rst is detected to when the storage strategy activates due to upstream
node compensation. Then, tr,sw = test,in − Psp minutes.

In the upper graph of Figure 32, the energy consumption of the upstream node
get very high, speci�cally for short sample times. This is because the upstream
node send 96-bit data packets (two variables and a timestamp) 5000 m. For this
case, Tviol = 0 % for all sample times. Theoretically, there are risks of threshold
violations if Psp > test,in, since the plume could be missed entirely in those cases.

The lower graph shows the di�erence between energy consumption in the inlet
node with or without upstream node compensation. Since the inlet node will not
go into active mode until it detects the plume by itself when node compensation
is applied, its energy consumption will be lower.

Consider also that the storage tank will likely take in much more wastewater
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if the sample period is large. This is because tr,sw is 123−Psp minutes in practice.
This means that the storage strategy will execute early after the plume is detected
by the upstream node.
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7 Conclusions
In this work, a possible application of a WSN was suggested and evaluated in a
simulation study. These simulations provided recommendations on sample periods
for WSNs with di�erent slowness. These recommendations are referred to as ts, lim
in this work. ts,lim = 13 minutes if the sensor delay is 5 minutes, 8 minutes if the
sensor delay is 10 minutes and 3 minutes if the sensor delay is 15 minutes. This
applies to plant inlet nodes with a default in�ow of 3 m3 min−1 when the activated
sludge basin has a hydraulic retention time of 2 hours. Other dependent factors
were the size of incoming toxic pulse and threshold value.

For future work, the sensor delays presumed here should be interpreted in a more
realistic manner. They should not only be the product of slow measurements, they
could also be a product of simple (but energy cheap) data processing algorithms.

Another conclusion to be drawn is that a con�guration of 2 nodes can considerably
increase system lifetime because of reductions in energy consumption, compared to
a one-node con�guration at the plant inlet. However, these advantages can theoret-
ically be drawn from a one-node con�guration upstream also, to send alarm signals
to the actuator. It is obvious that this con�guration lacks redundancy. If there
were two nodes, one could take the other node's place if it malfunctions. Another
drawback of this con�guration is that the storage tank is easily �lled up for long
sample periods if the storage strategy is on the safe side. These things were not
looked into in this work, the only performance limiting factor here was the sensors.

This work also suggests that even a somewhat unsynchronized con�guration of
one inlet node and one upstream node is better than a one node con�guration
at the inlet, from an energy perspective. A time o�set di�erence of 1 minute is
perhaps more than "somewhat unsynchronized" in reality, but it only results in
one wasted alarm signal packet in this model since they are sent once a minute
until the noti�cation packet is received.

The conclusions made in this work are preliminary. Before making any de�nitive
recommendations, this scenario needs to be tested in real experiments. Factors not
considered here include chemical reactions where toxins are included and di�erent
kinds of toxins, for example. What represented one node in this model may in
reality represent a cluster of nodes measuring di�erent toxins.
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