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Abstract

Automatic identification of northern pike (Exos
Lucius) with convolutional neural networks

Axel Lavenius

The population of northern pike in the Baltic sea has seen a drastic
decrease in numbers in the last couple of decades. The reasons for
this are believed to be many, but the majority of them are most likely
anthropogenic. Today, many measures are being taken to prevent further
decline of pike populations, ranging from nutrient runoff control to
habitat restoration. This inevitably gives rise to the problem
addressed in this project, namely: how can we best monitor pike
populations so that it is possible to accurately assess and verify the
effects of these measures over the coming decades?

Pike is currently monitored in Sweden by employing expensive and
ineffective manual methods of individual marking of pike by a handful
of experts. This project provides evidence that such methods could be
replaced by a Convolutional Neural Network (CNN), an automatic
artificial intelligence system, which can be taught how to identify
pike individuals based on their unique patterns. A neural net
simulates the functions of neurons in the human brain, which allows it
to perform a range of tasks, while a CNN is a neural net specialized
for this type of visual recognition task. The results show that the
CNN trained in this project can identify pike individuals in the
provided data set with upwards of 90% accuracy, with much potential
for improvement.
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Populärvetenskaplig sammanfattning

Östersjön är idag h̊art ansatt av människans härjningar fr̊an jordbruk, in-
dustrier, kommersiellt fiske, och många andra aktiviteter. När känsliga eller
värdefulla naturomr̊aden s̊a som Östersjön diskuteras, talas det ofta om nyck-
elarter som är särskilt betydelsefulla för att säkerställa balans och stabilitet
inom dessa naturomr̊adens ekosystem. Predatorer högt upp i näringsked-
jan brukar inräknas bland dessa nyckelarter eftersom de kraftigt kan reglera
best̊anden av andra arter i ekosystemet, och i sjöar och hav antas dessa roller
ofta av stora rovfiskar. Torsken och dess kraftigt minskade levnadskraftiga
best̊and i Östersjön har historiskt sett varit i fokus, men även gäddan är en
s̊adan rovfisk som idag minskar i antal.

P̊a grund av sin utbredning i svenska sjöar och kustomr̊aden utgör gäddan
en mycket viktig komponent i många svenska ekosystem. Utöver sina ekolo-
giska värden är det samtidigt ytterst tveksamt om n̊agon fisk är mer beryk-
tad, eller har en större plats i den svenska kulturen, än gäddan. Med sin
torpedliknande form, glupska aptit och inte minst sina kannibalistiska ten-
denser intar den status som rovfiskarnas rovfisk varhelst den förekommer.
Rimligtvis är det därför varken som nyckelart eller matfisk, utan istället som
jagad trofé av sportfiskare, som gäddan framförallt uppskattas och vördas.
I gäddfiskarens värld hägrar ständigt nästa vidunder i vassen, och löftet om
ett häftigt hugg följt av en utdragen kamp lockar årligen hundratusentals
sportfiskare – inhemska s̊a som utländska - ut i svenska vatten. Den näring
som detta ger upphov till omsätter miljardbelopp, och för den som n̊agonsin
ämnat införskaffa modern fiskeutrustning borde inte detta förefalla särskilt
förv̊anande.

I och med upptäckten av att best̊anden av gädda minskar i Östersjöomr̊aden
investeras det nu mycket resurser p̊a att bevara populationerna och skydda
gäddan fr̊an vidare p̊averkan. Projekt inriktas nu till exempel p̊a återställ-
ning av kustnära v̊atmarker vilka är uppväxtmiljöer för gäddor, s̊a kallade
”gäddfabriker”. Parallellt med s̊adana åtgärder ökar samtidigt kraven p̊a
noggranna populationsmätningar s̊a att man kan följa gäddans utveckling,
och därtill styrka effektiviteten hos de åtgärder som hittills gjorts. För att
kartlägga populationernas storlek och tillst̊and behövs dock betydligt mer
kunskap om antalet individer, och information om till exempel ålder och
storlek hos fiskarna. Denna information har hittills erh̊allits via provfisken,
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där professionella fiskare ger sig ut och f̊angar och fysiskt märker s̊a många
gäddor de kan vid olika tillfällen p̊a året. Dessa metoder är ineffektiva, kost-
samma, och genererar förh̊allandevis lite data. Det är inom detta omr̊ade
som detta arbete har undersökt om inte detta för̊aldrade manuella system
kan ersättas av automatiserande metoder där istället gäddor fotograferas och
identifieras visuellt av datorer.

Forskning har visat att gäddindivider har unika mönsterteckningar som de
kan identifieras via, och under de senaste åren har datorer kunnat tränas
för bildigenkänning av precis s̊adan karakteristik. Inte minst finger- och an-
siktes igenkänning har visat sig utgöra relativt enkla uppgifter för datorer,
som dessutom effektivt kunnat implementeras i var människas vardag via
mobiltelefonen. Hemligheten bakom denna utveckling – som ocks̊a ligger
bakom framg̊angar s̊a som Teslas självkörande bilar – heter Artificiell In-
telligens (AI), och särskilt den del inom AI som kallas maskininlärning och
neurala nätverk. Maskininlärning (ML) innefattar principen att l̊ata sys-
tem tillämpa självinlärande algoritmer för att tränas p̊a att utföra uppgifter
utifr̊an mycket stora datamängder, och neurala nätverk är ML-system med
den specifika twisten att de ocks̊a efterliknar neuronerna i en biologisk hjärna.
För detta projekt visade det sig just att ett neuralt nätverk, och d̊a ytterli-
gare mer specifikt att ett ”Convolutional Neural Network” (CNN), kunde
implementeras för att känna igen bilder tagna p̊a gäddor av samma individ.
Förenklat gjordes detta möjligt genom att ett tusental bilder p̊a m̊anga olika
individer gäddor först sorterades, och därefter tilläts nätverket träna p̊a att
själv sortera in bilderna p̊a samma sätt. P̊a s̊a vis har nätverket hela tiden
ett facit att förh̊alla sig till, där det belönas för korrekta identifieringar, och
bestraffas för inkorrekta s̊adana, till dess att det helt enkelt gör statistiskt
bättre och bättre försök att sortera in bilderna.

När nätverket till sist testades p̊a helt nya bilder som den inte tränat p̊a,
gavs lovande resultat. Nätverket lyckades sortera 9 av 10 nya bilder korrekt,
och d̊a ska det här änd̊a betraktas som ett ganska simpelt CNN. Utöver att
detta CNN har mycket stor utvecklingspotential, skulle det ocks̊a vara möjligt
att tillämpa andra nydanande metoder för bildigenkänning av djurindivider
med CNN. När detta görs parallellt med en fortsatt och utvidgad insamling
av gäddbilder, s̊a finns det mycket god potential för att till slut helt och
h̊allet fasa ut r̊adande metoder för populationsmätning av gädda, till förmån
för ett automatiserat system.
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Acronyms and keywords

Semantic segmentation An image processing method where for example
an object of interest is cut out and separated from the raw image

Ground truth The ”key” presented to the segmentation network which
represents the desired segmentation output

IoU Intersection over Union: A metric with which to determine how well
an image was segmented based on its overlap with the ground truth

NN Neural network: a machine learning system that imitates biologi-
cal neurons to find patterns within large sets of data

Weights Values that neurons learn and are assigned during training, which
determine how input is processed and ultimately how the network performs

FC-layer Fully Connected layer: contains the weights of the classic neu-
ral network, where each weight in a layer is connected to all weights in the
previous and next layer

Loss function A function that calculates how well the network predicts
solutions based on the assigned values of weights. A low loss infers better
predictions

Gradient descent The standardized concept behind self-learning algo-
rithms. The loss function is a function of weights, and gradient descent
occurs when it is minimized by changing the weights in the direction of the
loss function’s negative gradient

Optimizer Algorithms that alter the way the solution approaches its
minimum values during gradient descent accuracy A metric which as-
signs a percentage to how many of the networks predictions were correct

Image classifier A NN which is able to ”look” at images and deter-
mine their content in the form of pre-defined sets of classes (for example
objects, or different human individuals).

vi



CNN Convolutional Neural Network: A type of NN specialized in multi-
dimensional input, such as images, which makes it suitable for image classi-
fication tasks

Convolutional filter The main constituent of CNN:s. Is essentially a
matrix of weights which can be superimposed on image input to extract spa-
tial features

CONV-layer Convolutional layer: same principle as with the FC-layer,
only consisting of convolutional filters instead

Network structure Refers to the properties of a NN with respect to
how many layers it is composed of, how they are structured, and what types
of parameters are utilized in its setup

VGG Visual Geometry Group: Refers to the specific network structure
developed by Oxfords Visual Geometry Group, which is characterized by its
simplicity and straight forward design.

vii



1 Introduction

1.1 Decline in Baltic Sea pike

Anthropogenic activities in and around the Baltic Sea, such as over fishing
and eutrophication, are rapidly changing the Baltic Sea ecosystem (Larsson,
Tibblin, and Koch-Schmidt 2015). One imminent problem is the declin-
ing populations of predatory fish, since predatory fish constitute important
parts of complex nutrient web systems. When nutrient web systems are sig-
nificantly disrupted, such as with the dramatically reduced populations of
Cod over the past 50 years, trophic cascading effects can be observed on the
whole ecosystem. Currently, Cod is not the only concern regarding fish pop-
ulations in the Baltic Sea, as studies also show that populations of northern
Pike (Exos Lucius) are in decline (Berggren 2019).

The northern Pike holds great values in many Swedish freshwater and coastal
systems in terms of both ecological and economical functions, as it is pop-
ular for both commercial and recreational fishing. With the current decline
of pike in the Baltic Sea, actions directed at preserving pike populations -
such as wetland restoration - are key in preventing further loss of these val-
ues (Bryhn et al. 2019). Simultaneously, it is equally important to employ
a functioning and effective system to monitor pike populations, so that the
effects of preservation measures can be assessed and verified over time. How-
ever, methods typically used for systematically quantifying populations of
various species of fish do not work well for pike. Because of its living habits,
it rarely gets caught in fishing nets, and neither fishing with explosives nor
electric fishing work on fully grown specimen. Instead, pike is usually caught
by rod-fishing (angling), where the pike is physically marked before being re-
leased. This is a system which relies heavily on recapturing the same marked
specimen at later occasions. Additionally, it consists of heavy manual work
which occupies hundreds of people every season, while still not generating
particularly large sets of data.

1.2 Problem formulation

Instead of relying on a system in which pike is identified through manually
marking specimen through organized angling, it is thought that this could be
done through identification of the unique patterns of individual pike. Already
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in 1982 it was shown in a study that individuals of pike could be identified
based on their patterns (Fickling 1982), but the manual identification meth-
ods would be highly impractical for several reasons. A recent study, utilizing
a partially automatic software (still requires continual human input), further
proves the potential of pike-pattern analysis for individual pike recognition
(Kristensen et al. 2020). Today, there is however no reason to believe that
pattern recognition can not be performed on a fully automatic scale.

Methods of automatic pattern recognition are currently used for other species
of animals, where much progress has been made only in the past few years
via advances in machine learning algorithms. The success of many of these
projects altogether proves that machine learning, and in particular convo-
lutional neural networks (a type of Artificial Neural Network), can be im-
plemented to automatically classify individuals of animal species with excel-
lent precision, even for problems that seem very difficult. Examples of such
projects are entries to Kaggle competitions which tasked its competitors to
classify individuals of whales with limited quality and quantity of data.1 2.
For other projects, more general algorithms have been implemented which
are able to identify individuals within populations of different species.3 4 The
previous success of convolutional neural networks in classifying individuals
of animal species speaks in strong favor of the possibility for applying such
methods to classification of pike individuals.

1.3 Project goal

The goal of this project is to develop an automatic system which, via a con-
volutional neural network, can take images of pike and with a high confidence
classify them as specific individuals within a data set based on their unique
patterns. An automatic system could replace the currently expensive and in-
effective methods of pike monitoring used in coastal areas of Sweden, thereby
greatly benefiting preservation efforts.

1https://www.kaggle.com/c/whale-categorization-playground
2https://www.kaggle.com/c/noaa-right-whale-recognition
3https://www.wildbook.org/doku.php
4https://www.groundai.com/project/similarity-learning-networks-for-animal-

individual-re-identification-beyond-the-capabilities-of-a-human-observer9272/2
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2 Theory

2.1 Pike patterns

The pike pattern is characterized by specks of lighter colors (typically yel-
low), which are often round or oval shaped, on a background of primarily
green and brown (see Fig 1). The previous works on the subject, primarily
Fickling (1982) and Kristensen et al. (2020), indicate that there are two im-
portant general properties of pike patterns to consider for an identification
task. Firstly, it has been shown that the pattern significantly differs in shapes
and structures between a pike-individual’s right and left sides. Secondly, it
is important to consider that a pikes pattern may change over its lifespan.
Research has shown that the pattern remains stable over at least 1.5 years,
but probably longer than that (Kristensen et al. 2020). Since some pike live
for 20-30 years according to Bryhn et al. (2019), there is however no evidence
to support that the pattern is stable over the pike’s whole lifespan.

For this project, no particular part of the pike is specifically targeted for
analysis, but the fish body (abdomen and back areas) is overall prioritized as
it provides the most pattern information. The fins do however provide some
pattern information, and since shapes of fins and mouth, and eye position,
can be characteristic features, it seems that the best approach is to include
as much of the pike as possible.

3



Figure 1: The pike-pattern on the left side posterior abdomen and back of a
quite large pike specimen. Note also the patterns on the dorsal and anal fins

2.2 Artificial neural networks

Artificial neural networks (ANNs), often referred to as just neural networks
(NNs), are computational systems which originated from attempts to repli-
cate the functions of the nervous system, hence the term ”neural” (Rosenblatt
1958). Much like the nervous system with its clusters of connected neurons,
NNs consist of sets of connected nodes, of which some receive information
on one end (i.e. input), transform it via some computations, and pass it on
via other sets of nodes which repeat the process. When the input has been
passed through all the nodes of the network and finally arrives at the end of
the network, a decision is made (i.e. output) based on the now transformed
input. This decision can be anything from taking an action, to calculating a
maths problem or detecting the contents of an image - much like the range
of tasks governed by the human nervous system. Therefore, the function of a
NN is in principle similar to the function of a nervous system, and the nodes
of NNs are commonly referred to as neurons. However, biological neurons,
and the nervous system as a whole, are in the end far more complex than any
artificial networks and neurons currently developed. Therefore this analogy
is generally only used in the highest level descriptions of NNs. (Schmidhuber
2015)
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2.2.1 General structure

A standard NN has the neurons divided into a layered structure, with an
input layer and an output layer (visible layers), and so called ”hidden lay-
ers” in between, see Figure 2. For the standard NN, each neuron in a layer
connects to all the neurons in the preceding and subsequent layer, referred
to as ”Fully Connected” (FC), or Dense, layers.

A neuron receives an input - either from data in the input layer, or from
a previous neuron in a hidden layer - multiplies it with a real value called a
”weight” assigned to the neuron and adds a ”bias term”. Summed up for all
neurons, this can be formulated as:

f(X,W ) =
n∑
i

xi · wi + b (1)

where X contains all input values, and W all weights wi and biases b for the
n neurons.

Figure 2: A classic fully connected neural network with an input layer, three
hidden layers, and an output layer

Thereafter, the output of each neuron is transformed via an activation func-
tion before it is passed on as part of the system’s ”forward pass”. The
transformed output can either be passed on directly to the output layer as
the final output of the model, or further on to the neurons of a subsequent
layer, which repeat the same computational process.
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2.2.2 Gradient descent and back propagation

The artificial intelligence, i.e. learning, of NN:s occurs through algorithms
aimed at automatically improving the prediction performance of NN mod-
els during run time. One way, which has become standardized for modern
machine learning aimed at, for example, classification problems, is achieved
through the concepts of ”gradient descent” and ”back propagation” (Lecun
et al. 1998). A function is set to measure prediction quality in the final layer,
referred to as a ”cost”, or ”loss” function. The loss function assigns high
values to poor predictions and vice versa, thus introducing a minimization
problem with respect to ”learning” the optimal set of weights in the final
hidden layer which reduces the value of the loss function. Minimization is
achieved through having the values of the weights adjusted in the negative
direction of the gradient, i.e. for the solution to move in the direction in
which it decreases the fastest - thus gradient ”descent”. Since the values of
the weights in each layer are a function of the weights in the previous layer,
the calculation is performed through applying the chain rule repeatedly for
each layer while going backwards in the network, which is referred to as ”back
propagation”.

2.3 Convolutional neural networks

For image classification problems, the most common approach today is imple-
menting a type of ANN called convolutional neural network (CNN) (Good-
fellow, Bengio, and Courville 2016). The Keras API from the open source
platform Tensorflow was used in programming a CNN in Python language
for this project.

The CNN takes data with one or more spatial dimension as input, such
as images (two dimensions), and learns to detect spatial patterns which in
the end are combined to predict some type of identity trait of an input image.
For image classification problems, the model is set to learn the connections
between identity traits of images and a set of classes (objects, people, etc.),
transforming raw pixel data into class scores in the output layer.
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2.3.1 Convolution filters and operations

A problem with images as input in a NN, is that the input is very large,
even for a low resolution image (for example: a grey scale low-res image of
100x100 pixels = 10000 input neurons). Since every connection from the
neurons of one layer to those of the next is associated with a unique weight,
having FC layers quickly become computationally expensive for image input.
Therefore, a mayor advantage of CNN:s as opposed to the classical types of
NN:s, is that they introduce convolutional (CONV) layers which are not fully
connected.

The layers of a CNN (CONV layers) consist of weights which make up learn-
able filters. The filters are three dimensional, with a set width and height
generally far smaller than the input image, as well as a depth corresponding
to the number of channels (three for RGB, with 3 color channels) in the input
image. Filters slide across the width and height of an image at a certain step
length, referred to as stride, and convolve with the input in each position
(see Figure 3). This outputs a feature map which is a representation of the
patterns that the filter has extracted. For a RGB image, the filter will con-
volve each color channel, before adding them together as one feature map,
three channels deep.

Figure 3: The convolution operation

Each filter looks at, and learns from, specific parts of the input, called ”the
receptive field”, but is applied over the whole input space (Lecun et al. 1998).
This is intuitive in the sense that the property of a filter in detecting certain
patterns, such as edges, corners, or blobs of color, is universally applicable
to an image. This has the implication that weights are shared within CONV

7



layers, referred to as parameter sharing, and the computational cost signifi-
cantly reduced compared to that of a FC layer. The number of filters with
the same receptive field is referred to as the filter depth, or depth column.
This is separate from the network depth which increases with an increasing
number of CONV layers. With successive convolutions in multiple CONV
layers, i.e. a deeper network, the feature maps become increasingly com-
plex, detecting higher dimensional patterns. During the last decade, with
the introduction of many deep networks, this has proven to be one of the key
properties allowing for CNNs to excel at classification tasks.

2.3.2 Activation functions

Due to the potentially complex and heavy computation required for the mul-
tiple chain rule computations, it is paramount for the activation function
to have a well defined and simple derivative. The ReLu function, short for
Rectified Linear unit, defined as:

f(x) = max(0, x) (2)

is one such function commonly used today in CNN:s, and is exclusively used
in this project for hidden layers (Krizhevsky, Sutskever, and Hinton 2012).

For the output layer, a classifier CNN typically uses the Softmax function,
defined as:

S(x)i =
exi∑
j e

xj
(3)

Softmax normalizes the input from the last set of neurons into values between
0-1, all values adding up to 1 in the output layer. This can be interpreted as
a probability distribution for an input to belong to a range of labels (classes),
which combines well with the cross entropy loss function (see section 2.4.4.1
and equation 5).

2.3.3 Padding and pooling

In order for the data passing through a CNN to remain ”intact”, as well as
compact without losing too much information through sets of convolutions,
it is common to utilize padding and pooling.
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Zero padding ”pads” the input with zeroes on the borders, allowing for the
filter to run along the whole width and depth of the input. In this way, the
output dimensions can be controlled, and potentially (as is the case in this
project) rendered to have the same dimensions as the input; called SAME
padding.

Pooling is often applied to the output before being passed on to subsequent
CONV layers, and consists of operations to down sample the feature maps
by extracting more compact representations of the vital activations. In this
process, a majority of the activations are discarded, which drastically reduces
computational costs, and also mitigates over fitting. The most common ver-
sion of pooling, which is consistently used in this project, is Max pooling,
see Figure 4.

Figure 4: The max pooling operation

2.4 Training and optimization

With the highly accessible and comprehensive packages and libraries for ML
applications comprised within Tensorflow and Keras, the network structure
could be formalized rather quickly, while far more time instead was devoted
to training, evaluation and optimization.

2.4.1 Data division

When training and evaluating a NN, the standardized way of utilizing data,
is to divide it into three parts: one larger part for training (training data),
and two smaller parts for evaluation and testing (evaluation- and test data).
The training data for a CNN comprises all the images which the network will
be allowed to see when training, and consequently learning the features of.
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The evaluation data is often picked out randomly as a chunk of the training
data prior to training, which (for a case of rather homogeneous data, as is
the case for this project) means that its images generally hold similar traits
and features as the training data, although the network will never see those
exact images. This has the consequence that the network’s performance on
the evaluation data is a good indicator of when/if the network is over fitting,
i.e. learning the features of the training data too well, generalizing poorly
to other data. The last piece of data, the test data, preferably holds images
which constitute diverse features true to the real nature of the problem, which
the network has not previously been trained on, or optimized to perform
on. Therefore it is of vital importance that the test data is left altogether
untouched until the final moments in optimizing a model. Model performance
on the test data forms the ultimate test of the network’s ability to generalize
to the real-life problems.

2.4.2 Data pre-processing

Inputting raw images into a CNN is problematic, both computationally
and performance wise. Regardless of task, it is more or less always ad-
vised/necessary to perform two pre-processing techniques:

• Down sampling: A CNN requires for all images to have the same
input dimensions. Most images taken today with mobile phone cameras
or other, are of very high resolution (often the scale of several mega,
106, pixels) which are input dimensions way too computationally costly
for this project to deal with. It also likely that much of the information
in such a high resolution image can be represented just as well by a
lower resolution image. This is why it has been common in similar
projects to reduce the input image dimensions to somewhere around
100-300x100-300 pixels. For this project, images were down sampled
and fixed within that interval.

• Normalization: Large input values, such as the range of pixel inten-
sities between 0-255, can disrupt a network and slow down its learning
since weights are generally assigned much smaller values. This can be
fixed by normalizing the input. One common way of normalizing in-
put, which is used throughout on all input in this project, is by dividing
each pixel value by 255, thereby having the input range from 0-1.
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• Segmentation: For a classification problem where the object of inter-
est is located at a particular place in the input image, it might prove
beneficial, or even necessary, to isolate that part of the image before
analysis. For the identification task, a segmentation CNN was set up
to perform binary semantic segmentation, i.e. label each pixel as either
belonging to a foreground (pike) or a background (everything else in
the image) class. The labeled data is provided to such a network as
”ground truth images”, which are manually segmented images which
show the network the desired output for a given image. The output
from the segmentation CNN could then be used to crop out the pike
in the down sampled image, and place it on a black background.

2.4.3 Mini-batch gradient descent

When training a model on a data set, it can be very impractical and compu-
tationally expensive to perform the gradient descent with back propagation
after a full iteration (referred to as epoch) through all of the input. Instead,
it is common practice to divide the data into subsets of equal size, called
batches, and have the network update its weights after each epoch over a
batch. This is called Mini-batch gradient descent (MBGD), where the ex-
treme case of having a batch size equal to the size of the input data is called
batch gradient descent (BGD), and having it set to iterating over only one
image at a time is called Stochastic Gradient Descent (SGD). In this project,
MBGD is exclusively utilized.

2.4.4 Setup for gradient descent

The objective of minimizing the loss function with gradient descent requires
the selection of a loss function to be minimized, and an optimizing function
which calculates the updated weights for each step in the negative gradient.

2.4.4.1 Cross entropy loss function

Many different loss functions have been developed for implementation in
NN:s with different purposes. For classification tasks, cross entropy loss is
most commonly used. Cross entropy is a measurement of the difference in
two distributions of information (bits), which in the case of a NN can be
viewed as the additional number of bits which would be needed for our input
image to fully represent a certain class. This concept can be utilized as a
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loss function by one-hot encoding the input. One hot encoding means that
a prediction can only belong to one class, and is implemented by assigning
binary labels (example: input cat, classes: [dog, human, cat], label: [0, 0, 1]).
Entropy decreases with more certain probability distributions, which implies
that cross entropy approaches zero as the prediction becomes increasingly
accurate. Therefore, one-hot encoding transforms cross entropy into a min-
imization problem, which a CNN solves by becoming increasingly proficient
in correctly classifying input images (Murphy 2013).

For this project, both binary and categorical cross entropy are implemented.
Binary cross entropy is used for the segmentation task with only two classes,
and is calculated by:

Lb = −log(p) + (1 − y) · log(1 − p) (4)

Categorical cross entropy is used for pike recognition where the number of
classes is larger than two, and is calculated by:

Lca = −
M∑
c

yo,c · log(yo,c) (5)

where M is the number of classes, y is the binary indicator, and p is the
probability that the observation o belongs to the class c.

2.4.4.2 Optimizer and learning rate

As with the loss function, there are also a dozen different gradient based
optimizer algorithms to choose between when setting up gradient descent for
a NN. The optimizer algorithm governs the manner in which the weights are
updated between epochs, and different algorithms are specialized in address-
ing different problems associated with gradient descent. The algorithms are
briefly described conceptually below, leaving the technical details out since
optimizers are not extensively explored for this project.

The analogy of viewing the optimizer algorithm as a ball rolling down a
hillside is often used, where the goal is of reaching the bottom i.e. a mini-
mum solution to the loss function. In the ideal case, the deepest part of the
topography is targeted and reached (global minimum), but in most practical
cases the objective is to roll down into a satisfyingly deep enough pit (”good
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enough” local minimum solution). This is in large due to the ball being hin-
dered by for example flat areas (saddle points) and more or less shallow pits
(non-satisfying local minima solutions) during its rolling downhill. Therefore
it is important to alter the rolling properties of the ball so that it can roll
past such areas, or avoid them altogether. The main property which governs
how the algorithm behaves around such areas, is the learning rate which tells
the algorithm how large steps to take in the direction of the negative gradi-
ent. Algorithms such as Nesterov gradient descent, Adagrad, RMSprop and
Adam are aimed at adapting the learning rate to its environment, allowing
it to move faster in ”steep” areas, and more cautiously (although without
getting stuck) in less steep areas. Adam (Adaptive Moment Estimation) is
one of the most popular and widely used algorithms in recent projects, and
is also implemented in this project (Ruder 2016).

2.4.5 Optimizing model performance

When training a CNN and aiming to optimize its model performance, it is
common to perform cross validation to compare model performance with
different sets of hyper parameters. Hyper parameters are settings which
govern some of the training aspects of the network, such as learning rate,
kernel (filter) size, batch size, etc. For a project such as this one with very
limited computational power, cross validation is simply too computationally
expensive and time consuming. Most hyper parameters were therefore set
at constant values for the training session of a network once it seemed to
produce acceptable results. Since the issues with training models for this
project could almost entirely be traced down to over fitting, optimization
relied more heavily on regularization combined with using Keras checkpoints
(see 2.4.5.2 and 2.4.5.3) than hyper parameter fitting.

2.4.5.1 Evaluation metrics

Monitoring the value of the loss function on validation data gives an un-
derstanding of how to progress with training a model. Once this function
is minimized, and training has stopped, it is however necessary to express
the model performance on validation- and test data in terms of an intuitive
metric with real world applicability. For this, the metric ”accuracy” was
used for the identifier CNN, and intersection over union (IoU) as well as
pixel accuracy for the segmenting CNN. The ”accuracy” simply returns the
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percentage of correctly classified images after an epoch (i.e. 90% would infer
9/10 correctly classified images), while ”IoU” infers a percentage as to how
well a predicted segmentation overlaps with the ground truth image. The
IoU is the overlap between the segmented object in the prediction and the
ground truth divided by their union, seen in Figure 5, and is calculated by:

IoU =
TruePositives

TruePositives + FalseNegatives + FalsePositives
(6)

Since the IoU is calculated for each object separately, it can be expressed as
class-wise IoU, or for example as a mean of all classes (mean IoU).

Figure 5: A figure illustrating the Intersection over Union (IoU) metric used
for validating segmentation. The black square consists of the overlapping
pixels between prediction and ground truth with respect to the segmented
object. A better overlap means a higher IoU index

Lastly, pixel accuracy gives the percentage of pixels correctly classified in an
image, i.e. true positives/total number of pixels. For tasks with class im-
balance where the background is the dominating class, pixel accuracy poorly
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represents how well the target has been segmented - it then only gives an
indication of whether the background is mostly in place. Therefore, IoU is
generally preferred over pixel accuracy for this type of task, although it can
still be useful for validation and optimization purposes.

2.4.5.2 Regularization techniques

Regularization techniques can be used to great effect when a NN is over
fitting on the training data set. For the pike identifier, this was certainly the
case as the lack of comprehensive and diverse raw data was a highly limiting
factor. This was combated through implementation of two regularization
techniques:

• Data augmentation: Instead of increasing the pool of training im-
ages, which would be difficult and time consuming for this project, an
alternative is to augment images in different ways as they are generated
as input for the CNN. With on-the-fly data augmentation, the images in
each new batch introduced to the CNN are randomly augmented dur-
ing training, as opposed to in-place data augmentation where a new
set of augmented images is statically added to the training data before
training. This has the main advantage that each batch is ”new” to the
network, which allows it to learn new features, even if the training data
originally represented only a very limited set of features.

Augmentation techniques applied during training of the pike identifier
were vertical and horizontal shifts, rotations, zooming, vertical flips,
and brightness alterations. These are all augmentations which repre-
sent the diversity which the network would likely have to deal with in
a real world situation.

• Dropout: To mitigate over fitting, another approach is to randomly
cancel out (drop) a fraction of a layer’s (either hidden or visible) neu-
rons during each epoch. The idea behind this is to prevent the network
from relying too heavily on a small set of neurons while others are left
redundant, and instead find alternative ways of solving the problem
with other paths of activations. In this way, the model can become
better at generalizing (Srivastava et al. 2014).
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2.4.5.3 Early stopping and save best only

The Keras ML library provides different checkpoint functionalities during
training, for example providing the possibility to save the weights after the
best performing model epoch instead of only saving the weights from the
last epoch. It is also possible to automatically stop a training session before
it has completed all its epochs if the monitored validation loss-value does
not improve. Both of these checkpoint functionalities were utilized when
optimizing the pike identifying CNN.

2.5 Implemented structures

This section describes the different network structures used for the segmen-
tation and pike identification task, as well as the concept of transfer learning.

2.5.1 Unet

For the segmentation task, the U-net (Ronneberger, Fischer, and Brox 2015)
architecture was utilized. U-net is a so called ”encoder - decoder” network,
which (simplified) first applies a CNN architecture with convolutions and
pooling to down-sample the input and learn features (encoder), and then fol-
lows that up by up-sampling (decoding) the input to its original size with ”re-
versed” convolutions (transposed Conv-layers). Through the decoding layers,
spatial information is regained (for example where an object was located in
the input image); a property which allows for semantic segmentation.

2.5.2 VGG

The Visual Geometry Group (VGG) from Oxford University developed the
VGG-block CNN structure which is used throughout this project (Simonyan
and Zisserman 2014). A VGG block consists of one or more convolutional
layers with small CONV-filters (3x3), ReLu activation, and lastly a max-
pooling layer. Sets of VGG blocks are then stacked on top of each other,
followed up by one or more FC-layers with ReLu activation, and ending in a
FC output layer with soft-max activation. The VGG team’s very deep net-
works VGG16 and VGG19 (numbers indicating the number of CONV+FC
layers) have performed well (although no longer state of the art) in com-
petitions on benchmark data sets. Even though other, deeper, networks
have now performed better, the uniform and quite simplistic structure of the
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VGG network makes it relatively easy to grasp and modify which was of high
importance for this project where network depth was not necessarily a key
factor. The segmentation model utilizes the VGG16 as the encoder, while
several different VGG network structures were implemented for the identifier.

2.5.3 ResNet and InceptionResNet

This project briefly dealt with the CNN structures called ResNet (He et al.
2015) and InceptionResNet (Szegedy, Ioffe, and Vanhoucke 2016) for the
identifying task. Both these networks have both performed better on bench-
mark data sets than the deep VGG networks. ResNet is a deep network which
utilizes residual learning, while InceptionResNet is a version of ResNet which
combines with Googles Inception network (also called GoogleNet). Neither
network is elaborated upon further, since the project never explored them
in any depth, and the test results from these networks are therefore merely
intended as reference.

2.6 Transfer learning

For many classification tasks, the problem can be broken down into very sim-
ilar parts, where low and mid level features are detected in shallow layers,
and high level (more abstract) features are detected in the really deep layers.
Especially the low and mid level features are often similar between different
classification problems (most objects for example have low level features like
edges and corners), and therefore a trained network might work well on a
completely different task. It is however rarely the case that a network is
completely transferable from one problem to another. Transfer learning is
therefore the idea of merely extracting layers with weights that have (prefer-
ably) been trained on massive data sets, such as Imagenet5, as opposed to
transferring the whole network.

Transfer learning can be particularly beneficial for problems with limited
data, since much deeper features can be extracted from larger data set. After
transferring some, or all, layers and weights with these features, the network
can however also be customized to fit the problem. It can either be allowed
to continue training the imported weights on the target data set (referred

5http://www.image-net.org/
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to as ”fine tuning”), or have its layers ”frozen”, which renders the weights
static (Pan and Yang 2010). Transfer learning was applied when testing out
different model structures for the identifier.

3 Method

In image 6, the workflow is described visually as a workflow with the purpose
of providing an overview over the comprehensive method section.

Figure 6: A rough outline of the workflow described in the method section

3.1 Data

The raw data was made available through contacts at the County Admin-
istrative Board, who provided approximately six thousand images of pike.
The data did not adhere to any consistent format or labeling, and most pic-
tures in the data set were not sorted according to individuals of pike. This
generally had to be done by hand, where intended use of the data demanded
different measures of sorting, labeling, and pre-processing. These processes
of preparing data are further described for each part of the project below.
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3.1.1 Data for segmentation

Choosing data for the segmentation model to be trained on could be done
quite simply and efficiently, since it, for example, did not matter whether the
same pike occurred more than once. The only significant information to look
for in an image, was that it captured a shape of pike which is representative
of those shapes which generally occur in images of pike. Therefore, the main
focus in choosing images, was trying to cover all of the most common cases
with sufficient data.

Of the total set of data, of about six thousand images, the most common
image-type is one where a pike is held by one person, to a varying horizon-
tal or vertical degree, with the background mostly consisting of the interior
of a boat, water and sky. The second most common type is one where a
pike has been placed on the ground, or on a homogeneous mat, and pho-
tographed almost perfectly horizontal. The first type was considered a more
difficult problem for the model, since the pike did not have a consistent shape
in those images, and they simultaneously contained very different types of
backgrounds. To compensate for this, the model would likely need to train
to a larger extent on the first type images, in order to get them right. The
data set was therefore created as to consist of about two thirds of the first
type image, and one third of the second type, with pike held pointing both
to the left and right.

The major limiting factor to the size of the data set was the time-consuming
pre-processing that had to be performed on each image in order to create its
ground truth images. Due to this, only one hundred and fifty images were
picked out and pre-processed for the initial segmentation model.

3.1.2 Data for pike identification

For the pike-identification model, the selection of data posed a more sensitive
problem than for the segmentation model. First and foremost, a larger data
set of many different sorted individuals was required for this task. Because
of the assumption that the the patterns differ for each side of a pike, only
images with pike exposing the same side were selected. This ruled out many
images of pike exposing the ”wrong” side. Secondly, it was very important to
make certain that every image of pike was labeled correctly, since the model
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would otherwise learn to identify images of the same pike as different, and
vice versa.

3.1.2.1 Baseline model

The first step in creating a model for identification of pike, was to establish
a small network with enough data to get results of any kind. For setting
up this baseline model, the aim was to find ten individuals of pike with at
least around ten images, of decent quality and representation of typical pike-
images, per pike. At the time of setting up the baseline model, no sorted data
of individual pike with ten or more images per pike was available. Instead,
parts of the total data set was scanned for sets of images which showed clear
signs that they had been taken of the same pike at the same time (i.e. same
background, same person holding the fish, or other obvious markers). This
was a way of minimizing the risk of the network being fed with incorrectly
labeled images.

Ultimately, one hundred and eleven images divided over 10 pike individu-
als were picked out to form this data set. No pre-processing, either manual
or automatic, was performed on this data, since it was in the end only in-
tended for setting up a baseline model setup, getting it to run properly, and
for receiving rough indications of its performance on a non-ideal data set.

3.1.2.2 Biotest lake data

For developing the baseline model, as well as for implementing other model
structures, pre-processed data was produced by the segmentation model from
the ”Biotest lake” data set. This data set was not available initially, which
is why the baseline model was set up on a different data set. The images
in the Biotest lake data set had been photographed by pike experts at the
county board during test fishing trips, and had subsequently been sorted into
folders for each pike individual by the same experts. Because of this, the
identity of each individual of pike could be verified. The data set consisted
of 1500 high quality images of around 150 individuals, and consequently
contained far better representation of the real world situation than previous
data used. Note however that only a small proportion of all pikes in this
set were represented by images taken with many years apart. Most pike
individuals were simultaneously only represented by a handful images.
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3.2 Model setup

Different types of convolutional neural networks were trained for both the
task of segmenting images, and the task of identifying individuals of pike in
different images.

3.2.1 Segmentation

The model used for the segmentation was a U-net model with a VGG16
as encoder network, developed for semantic segmentation. The model was
imported from an open source Github repository 6 and was already fully
constructed and operational with respect to model structure and hyper pa-
rameters. This approach was chosen with the purpose of not using up too
much time on a secondary (although necessary) task, which – due to the
quite simple nature of the problem – would probably not require the devel-
oping of a highly customized network. Therefore, the data and the way it
was organized had to be adapted towards suiting the model requirements for
input. The model required the ground truth models to be of the same shape,
and with the same labels, as their corresponding training images, and the
pixel values of type uint8, being either 0 or 1. All images also had to be
formatted to (.png) files. A script was set up to perform this and organize
a directory for all the images, with training images divided into a training
and a test set in respective folders, along with two other folders containing
the corresponding pre-processed ground truth images. Twenty images were
selected for the test set, which left 110 for training. The model was then
trained and evaluated on 10 epochs.

Acceptable results were produced for most images, see results in Figure 7,
with around eighty percent of the white pike-pixels in the correct place.
Clearly, images which were well represented in the training set with respect
to light conditions, pike-position, etc, were already no match for the model
to classify with almost perfect precision. Other, more deviant images to the
training set, were evidently more difficult for it to process, and this indicated
over fitting. A first approach to try to deal with the model over fitting, was
to increase the data set with additional data, and thereafter train it more.
After the first instance of added data to the training set (around 30 arbi-
trary images from the raw data set) and an additional 8 epochs, results were

6https://github.com/divamgupta/image-segmentation-keras
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improved, Table 1 where particularly the class wise classification of pike im-
proved by 4% see Figure 9a). Also, from comparing the two images in the
middle top and left in Figure 8 and 9a, it is evident that the model to some
extent produced better predictions. From these images, it is however also
evident that there is a lot of room for improvement.

The next approach was to perform predictions on images from the raw data
set which were not in the training or test set, and pick out those which it
performed poorly on. The hypothesis for the poor prediction on the top left
image in Figure 9a , was that the lighting of the pike was brighter than the
model was used to, and therefore the color scheme of the pike did not match
well with what it was trained on. Therefore, most of the images now chosen
for prediction were ones with different - and particularly over exposed - light
conditions, or simply images of pike with different color schemes than previ-
ously. Some of the predictions of these images are presented in Figure 9b)
(note that no training on similar images preceded these predictions), and it
is evident that the model performs poorly on most of them. This indicated
that the hypothesis might be correct, and thereby additional images with
new or difficult properties were added to generalize the model.

The model was now also set to validate during training, which could help
in analysing whether the model was over fitting on this new extended data
set. This meant that a certain amount of images from the training set had
to be removed and sorted for validation instead. A script was created to ran-
domly pick out 20% of the images from the training set. Consequently, the
number of images for training did not increase much from the last training
session, but more importantly they would represent a wider diversity and
more features. In total, the model was now trained on 172 images, validated
on 43, and tested on 41 with results presented in Figure 11. Comparing figure
10b) with Figure 11b), it now appears that some of the recently introduced
test images are better predicted, some have gotten worse, and some are more
or less identical. Meanwhile, comparing the images from the original test
data set in Figure 10a) with those in Figure 11a), no improvement seems to
have been made, and especially the image in the top left is clearly predicted
worse. The evaluation IoU scores with regards to the test set are also virtu-
ally the same as from the previous training, which indicates that no evident
progress has been made in better generalizing the model from adding the
new data.
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Figure 11 shows that the training and validation pixel accuracy reach very
high percentages during training, where they both start leveling out at 98%,
and 95% respectively after 4 epochs. This indicates that further training
might only result in over fitting. Meanwhile, the loss function follows a simi-
lar trend for the training set, but not for the validation set. Here, the model
loss for the validation set fluctuates highly throughout training, and ends up
at a model loss after 20 epochs, several times higher than after only 3 epochs.
This provides a strong indication that the model is quickly over fitted on the
training data set during training. Regularization techniques could mitigate
this and improve model performance.

Despite not having the best performance in metrics, or necessarily the best
image predictions so far, the 3d training session model was assumed to still
generalize better than the other models since it had been trained and tested
on a larger and more diverse data set. Its performance could clearly be
improved on metrics and some more difficult images by implementing regu-
larization and checkpoints. However, the best predictions of those shown in
Figure 11, and the 90% mean IoU of the 3d training session, indicated that it
could probably already be used on a less difficult data set such as the Biotest
lake data set.

A script was set up to output segmented pikes from the Biotest lake data
set by reformatting the images to the same size as the segmentation model
output, and having the model predict the segmentation stencils for each im-
age. In the final step, the reformatted image and the stencil from 12 were
added together to produce fully segmented images, with only the pike as
foreground, and non activated (black) pixels in the background, see Figure
13. As expected, it turned out that the more homogeneous and high quality
images of this data set were generally no match for the segmentation model.
Even the seemingly difficult images in Figure 14, where the pike occupies a
small area of the image, with a person additionally obscuring its shape, were
segmented very well, see Figure 15. Going through all of the images, only
a small fraction of the approximately 1500 image had to be removed due to
poor segmentation predictions, and those were often of such poor quality, or
irrelevant format to begin with, that it was of little importance.
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3.2.2 Pike identification

3.2.2.1 Baseline model

The baseline model was constructed largely through following the instruc-
tions in a tutorial on setting up a CNN with Keras for the Cifar photo
classification problem 7.

Before being able to train this model structure on the pike data, the data
had to be formatted for implementation in Keras, and labeled correctly. This
process is described below, and was subsequently repeated for all other data
sets used in this project .

The ten individuals of pike constituted ten classes for a typical CNN model
to categorize images into, so each image had to be labeled with its respective
pike-id. This ID was defined through sorting each set of pike-images into a
respective folder with a unique number. From this training set, two images
from each pike-folder were extracted and put into another, identical, folder
structure which was to make up the test data. Next, a function was set to loop
through both training and test folders, loading each image, re-formatting it
to a given size, and turning it into an array of all the pixel values. The images
were then placed in the training or test array, containing the information for
each image of that category. In the same process, the label values for each
image were placed in two other arrays mirroring the training- and test image
arrays, so that the position of each label corresponded correctly to its image.
The label arrays were then one-hot encoded, so that each image would be
represented by a label of 10 digits, where only the digit corresponding to the
right id was 1, and the rest 0.

The data, formatted into arrays and labeled correctly, was ready for im-
plementation. Setting up and customizing the model structure and its hyper
parameters was therefore the next step. A Keras sequential model was con-
structed with a VGG-type block structure of four convolution blocks with
max-pooling, and two fully connected (dense) layers. ReLu was used as ac-
tivation function for the convolutional layers and the first dense layer, while
Softmax was used for the dense layer before the output layer. The optimizer

7https://machinelearningmastery.com/how-to-develop-a-cnn-from-scratch-for-cifar-10-
photo-classification
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was set to a learning rate of 0.001, with the adaptive learning rate Adam.
The model was compiled with categorical cross entropy as its loss function,
and accuracy as the evaluation metric. The model performed at around 40%
accuracy after 15 epochs on the test-set at this point. With some tweaking
of the number and order of filters within the convolutional layers, and the
number of fully connected units in the first dense layer, results could further
be improved. Having an increasing number of filters for each added convo-
lutional layer proved to significantly improve results, up to around 50-60%
accuracy.

Since it was not important for this model to be optimized for performance on
the small data set of questionable quality and representation of the problem,
this model structure, presented in Figure 7, was now set to function as the
baseline model. This model structure is referred to as the VGG6 network,
and could later be improved on with the introduction of more, and higher
quality, data. No validation data was picked out and analyzed alongside the
training data-set for this baseline model, since these early results on the test
data-set sufficed as indicator that the approach was valid and might work
well going forward.
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Figure 7: The baseline model structure (VGG6) following the VGG structure,
starting at block one in the left column and ending in the fully connected Soft-
max layer in the right column. It consists of 4 blocks and 2 fully connected
layers, which infers the ”6” in ”VGG6”. Each block contains a convolutional
layer followed by a ReLu activation and a max pooling operation

As a small experiment to test regularization techniques, a training session
was initiated with dropout and data augmentation. A 10% dropout was
applied after each convolution, and a 50% dropout after the first dense layer,
and data augmentation via keras ImageDataGenerator was implemented on
the training data, such as shifting, shearing, zooming and rotating. This
resulted in a model that performed between 60-80% on the test data set
after 15 epochs with batch-size set to 16 - a significant improvement. As
before however, results fluctuated highly between runs, which indicated that
the model performance was unstable and susceptible to the behaviour of
the stochastic learning algorithm. Regardless, this experiment still showed
that regularization techniques might be very effective for this problem going
forward.
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3.2.2.2 Baseline model on Biotest lake data

To create a reference for performance on the Biotest lake data set, the VGG6
model structure was trained on the larger Biotest lake data set that had been
processed by the segmentation model. An issue was that more than half of
the individuals of pike were only represented by one or just a few images,
and this posed problems for distributing the images of each individual into
training, validation and test data sets. Also, some of the images were poorly
segmented by the segmentation models prediction, and had to be removed.
Individuals which were left with less than 6 images were subsequently re-
moved from the data set. This left 64 individuals of pike with a total of 1318
images amongst them. Consequently, most of the image information was
intact for training, but the model would have to train on far fewer classes.

From the remaining data, a set fraction of the full set was randomly cho-
sen by a python function for validation and testing. Approximately 30% of
the full data set was set for the function to select from the full data set: 10%
(138) and 20% (250) for validation and testing respectively.

Running the VGG6 model with the new bigger data set, the model per-
formed similar to how it did on the smaller set, see Figure 17. The test
accuracy topped out at around 60%, while training accuracy plateaued at
almost 100%, which was a clear sign of over fitting. Running the model for
far longer, while applying regularization could resolve these issues. After
1000 epochs with 20% dropout after block 1,2,3 and 4, and a 50% dropout
after FC-layer 1, as well as various forms of data-augmentation, results were
vastly improved, see Figure 18.

3.2.2.3 Deep networks on Biotest lake data and transfer learning

Even if the shallow VGG6 model performed well with regularization, it was
also reasonable to implement a deeper network structure which could poten-
tially be more robust as it could learn more complex features. Utilizing these
models, and also testing them with transfer learning, was a feasible first step
in applying a deeper model structure. Three model structures, with acces-
sible weights generated from being trained on the Imagenet database, were
selected for this: VGG16, ResNet50, and InceptionResNetv2.
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For VGG16, training seemed to get stuck almost immediately (no improve-
ment of performance, either on training or validation data) without transfer
learning, while the training of ResNet50 got stuck in either case. For In-
ceptionResNetv2, no difference could be made out between training with or
without transfer learning, which implies that transfer learning is unnecessary.
This is why no results are presented for these training sessions. All remaining
results are presented in Figure 19, 20, 21 and 22. Sufficient training sessions
of different models were now completed for the results to be compiled and
compared in Table 2, and for a final assessment to be made of what the best
approach seems to be.

4 Results

4.1 Unet VGG16 segmentation model

4.1.1 Results from training

The different training sessions generated three models with different weights.
The IoU accuracy metrics of these three models are presented in Table 1.
The amount of data and number of epochs increased for each session, with
model 1 being trained on less data over fewer epochs, and model 3 being
trained longest on most data. The best results on all the IoU metrics are
given by model 2, with model 3 performing almost as well on the metrics.
Model 3 was however assumed to generalize well to more diverse types of
images, since it had been trained and tested on bigger and more diverse data
sets. Therefore, only the training of model 3 is presented below.
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Table 1: Results of Intersection between Union (IoU) on test data from
three models trained in different sessions. b = background, f = foreground
(pike)

Model 1:
10 epochs
110 Train-imgs
20 Test-imgs

Model 2:
18 epochs
140 Train-imgs
20 Test-imgs

Model 3:
20 epochs
172 Train-imgs
41 Test-imgs

Frequency
weighted IoU

94.3% 95.0% 94.7%

Mean IoU 87.7% 90.1% 89.5%
Class wise IoU
(b/f)

97.0%/79.0% 97.0%/83.2% 96.9%/82.2%

As seen in Figure 8, the training pixel accuracy approaches 100% after about
4-5 epochs for model 3, while the validation pixel accuracy stagnates around
95-96% also at about 4-5 epochs. Model loss fluctuates heavily through the
whole session, and seems to be minimized at either the 7th or 12th epoch.

(a) Pixel accuracy for training and val-
idation data

(b) Cross entropy loss value for training
and validation data

Figure 8: Validating model 3 over 20 epochs

In Figure 9, 10, and 11 are presented segmentation predictions generated by
model 1, 2, and 3. In Figure 10 and 11, the b) figures show the respective
model’s predictions on some of the new test images, while the a) figures show
predictions of images from the original test data set, same as in Figure 9.
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Figure 9: Segmentation predictions of images from the original test data set
by model from training session 1

(a) Results on some of the 20 test images (b) Some of the predictions on new im-
ages which the network was expected to
perform poorly on

Figure 10: Segmentation results of test images, from training 18 epochs on
a 150 image training set
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(a) Results on same test images as figure
10)

(b) Results on some of the images from
the new test set of 41 images

Figure 11: Results on images from training 20 epochs on a larger data set of
172 images

4.1.2 Performance on Biotest lake data set

Here are presented some results from implementing segmentation model 3 on
the Biotest lake data set. In Figure 12 and 14 the a) figures show the (re-
formatted) raw data images, onto which the images in the b) figures (”sten-
cils”) are superimposed to create the fully segmented images in Figure 13
and 15. The raw data images in Figure 12a) represent typical images within
the Biotest lake data set, while those shown in 14a) represent more outlying
types of images, which seem less trivial to segment adequately.
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(a) Re-formatted raw data (b) Modeled stencils

Figure 12: Example of a set of typical pike-images in Biotest lake data set

Figure 13: Superimposing stencils from Figure 12b) onto images in 12a)
forms fully segmented images
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(a) Seemingly ”difficult” re-formatted
raw data

(b) Modeled stencils

Figure 14: Example of a set of a more ”difficult” set of pike-images to segment
from the Biotest lake data set, where the pike is small and obscured

Figure 15: Superimposing stencils from Figure 14b) onto images in 14a)
forms fully segmented images
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4.2 Pike identification model

4.2.1 Model pipeline

All models presented in this section follow the pipeline in Figure 16, where
the raw data is from the Biotest lake data set which is pre-processed by
normalization, reformatting, and segmentation. The network structure pre-
sented therein represents the general format of the VGG networks, but is
much different from the ResNet and InceptionResNet structures.

Figure 16: The general model pipeline for the VGG based models

4.2.2 Baseline VGG6 model

Figure 17a) shows that the performance of the baseline VGG6 model quickly
converges during training. Training accuracy reaches 100% after only a few
epochs, indicating over fitting, while validation accuracy stops increasing
around 60%. The cross entropy loss for validation data fluctuates heavily,
potentially showing a decreasing trend over all 25 epochs. The loss is in the
b) figure is minimized after 13 epochs.

The training and validation accuracy and loss when running the VGG6 model
much longer (1000 epochs instead of 25) with regularization techniques are
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presented in Figure 18a) and b). Performance converges much slower dur-
ing this training session, stagnating after approximately 200 epochs for both
training and validation accuracy while still improving. Accuracy is poten-
tially still increasing after 1000 epochs for both training and validation data,
and ends up at max value after several epochs of around 90%. The loss fluc-
tuates heavily throughout, but reaches its minimum at a loss value of 0 at
the 913th epoch.

(a) Value of accuracy metric during
training

(b) Value of cross entropy loss function
during training

Figure 17: Accuracy and loss results from training the baseline model 25
epochs

(a) Value of accuracy metric during
training

(b) Value of cross entropy loss function
during training

Figure 18: Accuracy and loss results from training the baseline VGG6 model
1000 epochs with regularization on segmented images
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4.2.3 VGG16

When training VGG16 With transfer learning, it is shown in Figure 19a) that
the training and validation accuracy of the VGG16 model converges quickly
to 100% and approximately 80% after about 10 epochs. The loss value in the
b) figure is minimized at the 27th epoch. Adding regularization and training
over more epochs, training accuracy and validation accuracy reaches 80%
after 120 epochs, and seem to still be increasing according to Figure 20. The
loss value in the b) figure is minimized at the 116th epoch.

(a) Value of accuracy during
training

(b) Value of cross entropy loss
function during training

Figure 19: Accuracy and loss results from training VGG16 over 30 epochs
with transfer learning from Imagenet. All layers were frozen except the 2
dense layers at the end

(a) Value of accuracy during
training

(b) Value of cross entropy loss
function during training

Figure 20: Accuracy and loss results from training VGG16 120 epochs with
transfer learning from Imagenet. All layers were frozen except the 2 dense
layers at the end, and data-augmentation and dropout were applied
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4.2.4 InceptionResNetv2

Training and validation accuracy for InceptionResNetv2 showed highly un-
stable behavior during training, either with or without regularization, as is
shown in Figure 21a) and 22a). With regularization, validation occasionally
reaches an accuracy of around 90%. The cost is not as visibly shown to fluc-
tuate between epochs, which is simply due to the graphs in Figure 21b) and
22b) being zoomed out as the loss values are initiated at very high values. In
these graphs, the loss is minimized at the 13th and 39th epoch respectively.

(a) Value of accuracy during
training

(b) Value of cross entropy loss
function during training

Figure 21: Accuracy and loss results from training InceptionResNetv2 16
epochs

(a) Value of accuracy during
training

(b) Value of cross entropy loss
function during training

Figure 22: Accuracy and loss results from training InceptionResNetv2 60
epochs with data-augmentation
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4.2.5 Model performance summary

The performance results from various training sessions, of the different CNN
models for the pike identification task, are presented here. The hyper pa-
rameters during training were the same for each training session, but they
were run for different amounts of epochs depending on training time. Trans-
fer learning was employed for all models except the custom made baseline
VGG6 model, but only provided presentable results for the VGG16 model.

Table 2: Test data results of the different model structures on Biotest lake
data set

Model structure Optimized
Epoch

Regularization Test accuracy Test
loss

Baseline
(VGG6)

15 None 59.2% 3.283

913 Data-
augmentation
and dropout

89.2% 0.635

VGG16 x x x x
VGG16
TL* (Imagenet)

20 None 82.0% 0.952

116 Data-
augmentation

68.4% 1.120

ResNet50 x x x x
Inception-
ResNetv2

13 None 49.2% 2.200

39 Data-
augmentation

86.0% 0.821

*Transfer learning, non trainable convolutional layers, 2 trainable dense layers

38



5 Discussion

The performance results of the models utilizing CNNs developed in this project
indicate that the task of identifying individuals of pike with a high confidence
is certainly possible. It is however important to understand what these results
represent at this point, and the limits to its representation. It is also important
to understand in which ways the networks can be further analysed for deeper
insights and improvements. Moreover, it might prove vital to view the problem
of pike identification from a broader perspective, as there is much potential for
discussing other approaches to the problem.

5.1 Current approach

5.1.1 Data limitations

An imperative for the success of the current approach is careful selection, sorting
and pre processing of images from a diverse data set with high quality images.
After all, the idea is to create feature ids for each pike individual, and this relies
heavily on proper representation of the data for each pike. Therefore, the rep-
resentation limit of the data inevitably constitutes the most significant limit to
the representation of the results attained in this project. The Biotest lake data
set is a relatively representational data set compared to other available data, but
would be considered very small for many similar classification tasks. This has the
effect that it is still lacking representation in some crucial ways. For the purpose
of this project, one problem with the Biotest lake data set is that it does not have
a prevalence of re-captures, i.e. images of the same pike from completely different
periods of time. Therefore this project can produce no evidence that it is possi-
ble to classify images taken many years apart. Until there is clear evidence that
pike patterns are stable, and/or identifiable by automatic systems over periods of
time corresponding to the longest recorded lifespans of pike (approximately 20-30
years), there is similarly no reason to believe that the networks developed would
be able to classify such images. Even though it was never specified as a goal that
the network would have this capability, it can be assumed that it is an essential
property in the real world application.

5.1.2 Pre-processing

In the pre-processing stage, segmentation constitutes the most comprehensive mea-
sure. Whether segmentation is an absolutely necessary pre-processing for this task

39



is not established since the high performing models were not tested without preced-
ing segmentation of the raw data. Only the baseline VGG6 model on the smaller
initial data set was trained without first segmenting the raw data, but it was never
trained again on the same data with segmentation. Therefore, the results are not
decisive on the matter. It can however be assumed that segmentation reduces noise
and enables the identification models to focus more directly on relevant features.
Even if a deep network could perhaps look past this if properly trained on a large,
diverse and high quality data set, segmentation will almost certainly reduce the
complexity of the problem which simplifies training, and potentially renders a very
deep model superfluous. For this project, it is unlikely that the results of any of
the networks on the Biotest lake data set - and especially the quite shallow baseline
VGG6 model - would have been of the same quality without segmentation, since
the images of a given pike id displayed a high level of background homogeneity.
Moreover, it is important to consider that the segmentation model performed well
even when it was hastily set up without exploring more ways of improving it, and
without optimizing it during training. In that way, it posed a small investment
which at least ensured that the model did not over fit on irrelevant features in the
background. If it would be required for the segmentation model to perform better,
there is a variety of rather simple measures that could be taken. For example,
performance would likely improve if the pike was roughly cropped before segmen-
tation, so that there was less noise in the image. At the moment, segmented images
sent as input to the identifier mostly consist of background. For pike with very
complex or subtle pattern characteristics that require high resolution, this could
be a problem. By first cropping the images, a larger portion of the segmented im-
ages would now instead be occupied by pike-pixels (foreground), thus preventing
the background from becoming a problem. In general, more pike pixels occupying
the 308x204 pixels (current format of segmented images) means more pike-pattern
information per image as input to the identifier CNN, which is always desirable as
we are not interested in the background.

5.1.3 Identifier model structure

When it comes to the pike-id models, the current approach is to employ the soft-
max classifier at the end of the network, where each node essentially learns to pick
up on a specific pike-id. An advantage of this approach is that inspiration, know-
how and network model structures can be derived (and in the latter case even
transferred) from the vast amount of existing projects which solve similar classi-
fication problems in this way. For this project, it enabled for easy and intuitive
adoption and testing of networks without them having to be extensively adapted
and customized for pike classification. For some networks, attaching the 64 neuron
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FC layer (pike classifier) at the end sufficed as adaptation. Focus could instead
be on training the models and evaluating and optimizing them, which produced
comparable and insightful performance results.

The results generated quite convincingly indicate that the pike classification task
can largely be solved through adopting existing network types. As shown in Table
2, especially convincing results were those obtained from training the quite shallow
baseline VGG6 model (a scaled down version of the VGG nets) with regulariza-
tion. Based on the high accuracy (90%) it appears that model size and depth
is not necessarily a determining factor for individual pike identification, although
the InceptionResNetv2 performed almost as well without being allowed to train
as extensively. The trade-off between performance and computational cost will
however work in the baseline models’ favor when compared to very deep models,
such as InceptionResNetv2.

For a fair assessment, the obtained results do not in the end suffice as evidence for
superiority of one model or the other, and it should be stated that the evaluation
metrics have limited representational power. For one, they only evaluate accuracy
on the data fed into the networks thus far. Despite data augmentation, certain im-
age types which could occur in a real world situation might not be well represented.
Connected to this, is the problem of the network acting as a ”black box”, i.e. it is
not particularly clear what either of the networks look at to determine an image’s
class belonging. Perhaps a model that performs worse actually focuses on parts of
the pike such as the pattern, which is arguably a complex and difficult feature, but
one that we would desire for it to focus on. Simultaneously, a better performing
model might focus on more simple features which work very well for this data set,
but would not hold for the complexity of a ”real world” data set. Analysing this is
unfortunately not a trivial task and beyond the scope of this project. This might
however change in the near future, as much current research is dedicated towards
understanding the mechanisms of neural networks, where ”Explainable AI” (XAI)
has emerged as a field specifically intended to counter balance the ”black box”
problem (Gilpin et al. 2018).

5.1.4 Further analysis

The results generated thus far can be improved both when it comes to perfor-
mance, and when it comes to interpreting them. In terms of performance, there
are many straight forward ways of increasing the accuracy metric for the different
networks since few of them got to completely finish training, i.e. stop only when
they had reached their full potential. This can for example be clearly observed for
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the VGG16 model in Figure 20 since both training and validation curves have in-
creasing trends by the last epoch, but might also be the case for the baseline model,
see Figure 18. Experimenting with data augmentation could also be relevant in
the case of extending training, since only a particular (and somewhat randomly
selected) degree of data augmentation was utilized in this project. Moreover, one
could also invest in tweaking hyper parameters and performing cross validation.
However, extending the training sessions with more epochs, testing different forms
of data augmentation, and/or performing cross validation would be a computa-
tionally expensive processes (which is why it was never done in this project), and
a GPU would be preferred for such tasks.

Beyond just trying to improve the results, there are plenty of ways to analyse
them further to attain deeper insights. For example, it might be worthwhile to in-
vestigate if certain pike individuals within the data set are particularly difficult for
the network to classify, and therefore account for most of the error, or if the error
is evenly distributed between all of the individuals. This type of analysis could be
connected with attempts to visualize the model behavior via plotted feature maps
and/or heat maps. Displaying what the feature maps look like, and what type of
input they are activated on, gives insights into what the network ”sees”8, while
heat maps highlight where the model ”looks”9. Even if the assumption within this
project is that networks will utilize the individual patterns of pike for identifica-
tion, that might not necessarily be the case. The network could over fit on other
trends in the data, and especially do so in undesired ways if the model is shallow
and/or the data is not representative of the real world problem. Analysis of the
model behavior could thereby provide evidence that the pike pattern is (or is not)
the most significant trait for automatic pike identification.

Despite potential efforts aimed at developing the current approach, and further
analysing the results generated from it, there are reasons for why it is probably
not the most optimal approach to begin with. The main drawback is that it is
impractical, and possibly difficult to implement for pike-identification in the real
world situation, once the network is active. The potentially endless stream of new
pike-ids would have to be learnt individually and be appended to the network
retroactively once it is running, since the final FC-layer is by its nature stable
and not dynamic. This is computationally expensive since the network has to be
re-trained each time a new id-neuron is added to the final FC layer. It is also a
process of high uncertainty, since it is not a completely trivial task for the network
to determine whether a pike individual is new or already existing. For example,

8https://cs.nyu.edu/ fergus/papers/zeilerECCV2014.pdf
9https://jacobgil.github.io/deeplearning/class-activation-maps
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one could introduce a threshold which the networks would have to satisfy with a
certain confidence before adding a new pike, but this still renders the risk of omit-
ting certain pike from the network, or representing a certain pike individual with
more than one id-neuron. Another solution could be to only implement predic-
tions made by the network after verifying them via a control-step. This step could
consist of comparing and verifying meta-data between the new image and perhaps
the top five or so pike-ids that the network predicts, such as pike location, length,
or height. It could also consist of human supervision, such as having experts verify
the identity of recently introduced pike which the network is less certain of.

In any case, a control step is also associated with many problems and in itself
could potentially render the functionality of the network overly complicated and
impractical. For one, attaching, storing and accessing many different types of
meta data is not a computationally light task, and requires a large degree of man-
ual data management. More importantly, if the manual and human-reliant aspect
is something that is intended to be phased out, introducing heavy manual data
management contradicts the purpose in the first place. This is especially the case
if the system also relies on human supervision of the model output.

It will be advantageous (or even necessary) to include aspects of human control,
like manual data management or human supervision, in the initial stage of running
the system, and perhaps beyond that to some extent. In the end, after evaluation
and verification, it is however more desirable to have all the key functionalities, of
which automatic addition of new pike individuals is one, compacted within the au-
tomatic parts of the system pipeline. This currently seems like a difficult criterion
to fulfill with the current approach.

5.2 Alternative problem approach

An alternate approach currently being considered consists of instead implementing
a ”Siamese network”. This is a method which has been successfully employed in a
few previous projects of individual animal identification with limited data (Schnei-
der et al. 2019). The core idea is that instead of having the network learn what
each individual looks like, it is instructed to learn to distinguish between two ar-
bitrary individuals. This means that if we introduce an individual to the network
it will not find its specific signature and match it with an existing signature, and
this in turn means that we do not need the final FC-layer. Instead, it will run two
identical parallel (Siamese) CNNs where one takes in the input image, and one
takes in images from one pike-id at the time from the database. The networks will
output two feature maps in parallel, and a type of loss function (discriminator)
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will measure the discrepancy between the outputs, thereby predicting whether the
input was of the same individual or not. This is then repeated for each pike-id in
the data base, where each id could be represented by one or more images. The
discriminator will be motivated by gradient descent to learn how to distinguish
between individuals, while the Siamese networks are frozen since they must be
identical at all times.

A Siamese network would be convenient for this project, and for pike identifi-
cation in general, in several ways. First of all, the identical parallel networks can
be any type of CNN which successfully extracts and outputs relevant features.
This seems to be achieved by the classifier CNNs used in this project so far, so
after removing their final FC-layers they could just be transferred to the Siamese
network. The same type of pre-processing of data would still be useful or required,
and the parallel networks would be more or less operational in their current state.
Where the major alterations and innovations to the system would have to be made
concerns data selection and structure, along with discriminator architecture. The
requirements on data would be less strict, since there is no need for an abundance
of images per individual for the Siamese network. Many of the individuals omitted
for this project because they only consisted of 2-4 images could be added to the
Siamese network data base. In fact, even pike ids consisting of only one pike can be
used, since the network learns to distinguish between pike from both correctly and
incorrectly predicting true positives (matches) and true negatives (non-matches).
Many of the pike ids with few pike images were (coincidentally) re-capture data, so
a Siamese network would directly open up for better representation of re-captures.
The currently available re-capture data might not suffice regardless, but it would
be a start nonetheless.

During training, the Siamese network would have to be carefully set up so that
all images are set up in pairs with the correct label, being either true positives
or negatives. This involves a slightly more complicated data structuring, but is
straight forward once set up. The main trade off of the Siamese network when it
comes to data, is that it will need many different individuals rather than many
images per individual. At the moment, it is difficult to say if the Biotest lake data
set fulfills this, and perhaps it would have to be extensively expanded upon with
new pike individuals from many other data sets.

Another advantage of the Siamese network is that it could generalize to identi-
fication tasks beyond just pike. Compared to properties of typical classification
networks, distinguishing between individuals is a property which in theory could
be implemented for other animal species in general, and fish species in particular.
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In other similar projects, Siamese networks have been used in this way, where they
have been successful (although to different degrees) in identifying same individuals
for completely different species. At least in the long term perspective where the
goal could be to expand the application of the network, this speaks in great favor
of the Siamese network approach.
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6 Conclusion

This project has shown that individual pike identification with high confidence
can be achieved with a system that segments images before inputting them to a
convolutional neural network. The accuracy reached upwards of 90% for the quite
shallow VGG6 network (4 convolutional layers) on a test data set that represents
many features present in the real world situation. Data augmentation and drop
out helped the network generalize well, and improved performance significantly. A
very deep network is therefore not necessary to solve the task with the current data.

Further analysis should be aimed at investigating how well the network gener-
alizes to a larger (or differently augmented) and more diverse data set, as the data
augmentation implemented thus far can not account for all types of diversity that
might appear in the real world. Particularly identification of re-captures of pike
many years apart can not be verified based on the current data set, as no sufficient
amount of such data is contained therein. Going forward, other CNN systems
which avoid problems inherent to the typical soft-max classifier approach should
also be considered. The Siamese network is one such promising system which could
be adopted for pike identification.
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